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Abstract

RAW files are widely applied in cameras and scanners
as storage because they contain original optical data. Dif-
ferent cameras usually process the RAW files using diverse
algorithms that are incompatible. To address the issue, we
propose a general transformation method for cross-camera
RAW to RGB mapping based on Generative Adversarial
Network (GAN). Moreover, we propose a saliency map-
aided data augmentation technique and the saliency maps
are produced by Saliency GAN (SalGAN). Given RAW file
as an input, it jointly predicts the RGB image and corre-
sponding saliency map to enhance perceptual quality in the
generated image. The proposed architecture is trained on
the Zurich RAW2RGB (ZRR) dataset. Experimental results
show that our method can generate more clear and visually
plausible images than state-of-the-art networks.

1. Introduction

The RAW files contain the original data from optical sen-
sors of either a digital camera, a phone camera, or an image
scanner. Normally, RAW files have not been processed and
therefore represent a wide dynamic range. However, RAW
files cannot be directly printed as visible images, although
they contain information to construct a human-readable for-
mat with high quality. To obtain the photographic rendering
of the scene, traditional pipeline involves five operations:
decoding the RAW files, interpolating the raw pixels into
color pixels (demosaicing), white balancing and noise re-
duction, color translation and tone reproduction (e.g. SRGB
color space), finally compressing the result (e.g. JPEG for-
mat). Different cameras often come with proprietary con-
version techniques while it is also difficult to develop uni-
form standard for processing RAW format. In this paper,
we investigate a general mapping for RAW files, trying to
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generate photorealistic RGB representations.

Since human retina is most sensitive to green light, Bayer
[2] proposed a specific color composition to mimic the
physiology of human perception. It is designed to maximize
clarity of the perceived luminance. The RAW files captured
by cameras follow this scheme and is called ‘Bayer Pat-
tern’. There are multiple types of storage for RAW files,
all of which use two times green pixels compared with red
or blue, hence are composed of RGGB, RGBG, BGGR, or
GRGB. Basically, each pixel of RAW files is designed to
record only one of the RGB channels, therefore it cannot
specify real color of corresponding pixel in visible format.
To obtain the RGB images, the ‘demosaicing’ process inter-
polates every neighboring four pixels in RAW format into
three channels in RGB format. Take a simple ‘demosaicing’
approach for instance, a RAW pixel filtered by green Bayer
filter provides precise value in output green channel. The
red and blue channels for this output pixel are computed
by adjacent RAW pixels. Specifically, two near red or blue
RAW pixels can be used to predict the output red or blue
channels for current location, respectively. Normally, tradi-
tional ‘demosaicing’ methods may produce discontinuous
and false colors due to minor local perception field. More-
over, since different companies often adopt separate algo-
rithms to visualize RAW files, it is challenging to transfer
RAW files into visible format using discordant techniques.
To address these problems, we utilize deep learning-based
techniques that model long-range pixel relations and learn
a general mapping for images captured with different cam-
eras. As Generative Adversarial Network (GAN) [5] has
achieved great fitting ability to transform the images from
diverse domains, we define RAW files and RGB photos as
two related domains and learn the general mapping from
RAW to RGB.

Image domain transfer aims to learn the internal rela-
tionship and mapping among images within two or more
domains. Recent years have witnessed a wide range of ap-
plications to enforce translation among different types of
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Figure 1. Some training samples. The first row and second row vi-
sualize the input RAW files and target RGB photos in ZRR train-
ing set. The last row shows the saliency maps generated from
the pre-trained SalGAN. For each sample, the training images are
paired. Please visit https://github.com/zhaoyuzhi/
RAW2RGB-GAN to see more examples and to try our model and
code.

source data, such as grayscale pixels [14], semantic maps
[32], edges with texture [35], and class labels [19]. The
data for domain transfer can be categorized into paired [14]
and unpaired [37], while paired images mean that the pixels
are all aligned. RAW to RGB is a kind of paired image do-
main transfer task. For each pair, the RAW input contains
four channels (RGBG) while the output is RGB image. Ba-
sically, RAW to RGB is a new topic in domain transfer area
and there are limited relevant researches. Therefore, we uti-
lize the general algorithm Pix2Pix [14] as a baseline, which
is a conditional GAN [22] system that models paired image
transformation.

To enhance the perceptual vividness, we propose a novel
saliency map-aided GAN framework and train it on the
newly collected Zurich RAW2RGB (ZRR) dataset [11] in
AIM 2019 RAW to RGB mapping challenge [11]. The
dataset contains over 90000 aligned local image patches
captured with Canon 5D Mark IV and Huawei P20 cam-
eras. The visible JPEG format photos are taken from Canon
camera. The RAW files are from Huawei camera, then re-
shaped into 4-channel PNG format for saving. Actually,
the four channels represent the RGBG (transparency chan-
nel = G) that remain the value of original data. There are
89000 training pairs, 2139 validation pairs, and 2139 test-
ing pairs in the dataset. The main challenge for learning the
mapping lies in limited training data hence effective data
augmentation methods are vital. Normal data augmenta-
tion approaches such as random cropping, rotation, and flip-
ping have been widely used in image generation tasks for
optimization. However, they perform only physical trans-
formations without semantic information, which is signifi-

cant for domain transfer. To better describe semantics, the
saliency maps of output RGB images are involved in our
model, which represent attention area of human. Saliency
map is a set of contours extracted from the image and high
response area indicates more attention. We use the pre-
trained Saliency GAN (SalGAN) [26] to generate saliency
maps corresponding to output RGB images and make them
as proxy target for the system. We show some training sam-
ples in Figure 1. Apart from predicting RGB images, our
model also produces saliency maps, then they are used to
scale the pixel level loss as a special type of data augmenta-
tion.

Compared with the baseline, the main contributions of
this paper are as follows:

1) We propose a novel saliency map-based data augmen-
tation method to enhance the performance of limited train-
ing data;

2) We utilize an efficient U-ResNet generator architec-
ture that generates 28 images per second on single GPU;

3) We experimentally demonstrate the proposed model
produces high-quality RGB images.

2. Related work

For paired image-to-image translation tasks, there are
many commonalities between RAW to RGB and coloriza-
tion. Firstly, both targets are to produce perceptually plau-
sible RGB images, while the inputs are RAW files (4 chan-
nels) and grayscale images (1 channel), respectively. Sec-
ondly, the input and output for either training or testing
are paired, which means the pixels at same position are di-
rectly related. Thirdly, both tasks are kinds of image gen-
eration and share similar algorithms. However, there are
also some main differences. Normally, colorization algo-
rithms utilize a whole image to learn the mapping, while
this paper tackles the problem that recovers the real scene
from a certain patch of a whole RAW image. Additionally,
recent state-of-the-art colorization approaches are trained
on a very big dataset like ImageNet [29], while the ZRR
dataset only contains image pairs less than one tenth of Im-
ageNet. We firstly investigate colorization algorithms, then
introduce some GAN frameworks for image enhancement.
Finally, we conclude all the networks and analyze the de-
sign of proposed architecture.

The existing colorization algorithms can be briefly cat-
egorized into three classes: scribble-based [18], exemplar-
based [34], and fully automatic [4,12,17,36]. Given some
color hints, scribble-based approaches propagate them to
the rest of target grayscale image. It is similar to the paint-
ing process of human. In contrast, exemplar-based ap-
proaches extract the color information of a reference im-
age, then apply it to the grayscale image by matching their
spatial features. However, these methods require much ad-
ditional information in the form of color scribble and refer-
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ence image. An alternative approach is to train an automatic
end-to-end colorization system. Recently, fully automatic
colorization methods learn the general color distribution of
natural images from a large dataset. Normally, these meth-
ods have better generalization ability to different types of
images without any intervention.

Recently, Cheng et al. [4] proposed a pioneering deep
learning-based colorization system, which directly col-
orizes image based on the handcrafted features. The fea-
tures are three-level given by patch, DAISY, and semantic
descriptors. However, the network structure is too limited
to improve the performance. Instead of using handcrafted
features, Larsson et al. [17] adopted an end-to-end network.
Since colorization task relies much on semantic informa-
tion, they utilized the hyper-column descriptors from a pre-
trained VGG-16-Gray [30] network to predict the hue and
chroma for each pixel. To reduce computing time, lizuka
et al. [12] proposed a multi-task colorization system. The
mainstream is an auto-encoder, while there is an additional
branch that classifies the input grayscale images. The clas-
sification branch enhances the whole system to extract the
semantics of input, which improves the colorization quality.
On the other hand, Zhang et al. [36] transferred coloriza-
tion into a classification task. They separated all the color
combinations into different discrete values and trained the
system supervised by them.

Generative Adversarial Network (GAN) [5] has shown
its advance in data generation in recently years. It allows the
generated data to fit into the ground truth data by minimiz-
ing divergence of both distributions. For the GAN frame-
work, generator G captures the data distribution, and dis-
criminator D judges whether the sample is ground truth or
produced from generator. During the training process of
GAN, G and D are trained alternatively until G has enough
ability to approximate the real data distribution. However,
the adversarial training process is oscillating, which is easy
to fall into model collapse. To stabilize the training of GAN,
Radford et al. [27] proposed a novel architecture called
Deep Convolutional Generative Adversarial Network (DC-
GAN). It has certain architectural constraints and hyper-
parameter settings therefore generator learns good represen-
tations of images for generative modeling. Moreover, regu-
lar GAN hypothesizes the discriminator as a binary classi-
fier while minimizes Jensen-Shannon-divergence (JSD) be-
tween the generated distribution and ground truth at train-
ing. However, it usually leads to adversarial training failure
due to gradient vanishing. To address this problem, diverse
objective functions have been proposed. For example, the
well-known LSGAN [21] adopt a least squares loss function
for the discriminator that minimizes Pearson y? divergence.
The WGAN [1] empirically minimizes an efficient approx-
imation of the Earth Mover distance, which is enhanced by
WGAN-GP [6] by adding the gradient penalty.
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There are some frameworks [9, 10, 14, 32] that com-
bine conditional image generation and GAN for image en-
hancement. Ignatov et al. [9] proposed a novel enhancer
that transforms the ordinary images into DSLR quality pho-
tographs with arbitrary sizes. To effectively train the model,
they collected a large dataset including smartphone pho-
tos as input while DSLR camera photos as output. How-
ever, this model required aligned training pairs. It was im-
proved by adding an additional adversarial color loss [10]
that makes whole system ignore the trivial location dispar-
ity. The general Pix2Pix [14] framework takes generator
with U-Net [28] architecture and performs down-sampling
convolutions as many as possible in order to make the con-
nection for remote pixels. For discriminator, it utilizes the
PatchGAN architecture that maps input image to a Markov
random field. Thus, the system has a big perception field
and strengthens high-frequency correctness for generated
samples. However, executing too many down-sampling
convolutions causes too much loss of information so it leads
to low fidelity of generated samples. To model enough per-
ception field and remain much information, we combine a
U-Net backbone with 4 ResBlocks [7] at bottleneck as our
generator. For discriminator, we utilize a simplified Patch-
GAN architecture to enhance the perceptual quality. More-
over, the RAW to RGB mapping task is highly challeng-
ing due to lack of context information and data. To ad-
dress these problems, we add a second decoder predicting
saliency maps. It serves as an implicit data augmentation
method which provides the system with low-level informa-
tion. Overall, the proposed system aims at producing per-
ceptually high-quality images based on saliency map-aided
data augmentation.

3. Methodology

The architecture of the proposed system is shown in
Figure 2. It contains an U-Net [28] structured generator
and a Patch-based discriminator [14]. The generator pro-
duces RGB images and saliency maps given RAW file input.
There are two decoders of the generator, while the short-
cut connection is between encoder and RGB image decoder
branch. The saliency map decoder is attached to each layer
of RGB image decoder without sharing weights. The dis-
criminator receives generated images or ground truth and
maps them to a feature embedding. The details of the pro-
posed architecture are presented in the following subsec-
tions.

3.1. Network architecture

There are two main techniques used in generator that im-
prove the quality and accelerate convergence: ResNet [7]
and U-Net [28]. The ResBlocks have been shown prior-
ity in many recent generative models [19, 37]. Instead of
stacking few layers directly for underlying mapping, the
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Figure 2. Architecture of the proposed RAW to RGB Generative Adversarial Network. The generator applies U-Net structure and receives
a RAW file as input, finally generates a visible image with corresponding saliency map. The discriminator judges its input RGB image
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whether real or fake.

residual connection explicitly adds the input to the out-
put. Normally, ResBlocks are embedded into the bottle-
neck part, which effectively extract the high-level seman-
tics for constructing visible RGB images. Moreover, four
ResBlocks obviously enhance the perceptual quality due to
the enlarged perception field. The other design U-Net is to
directly replicate each encoder block to decoder part with
same shape, which effectively reduces gradient vanishing.
The short-connection is only implemented in RGB image
decoder. By combining the low-level details and decoder
feature maps, it is easier to remain the edges for the out-
put. To improve the perceptual quality, we further leverage
a saliency map decoder for saliency detection. According to
the visual saliency mechanism, we perform an element-wise
product of two outputs to obtain the attention region and de-
sign an objective function based on it. For discriminator, we
choose the PatchGAN architecture [14]. It maps input to an
one-channel feature map by a series of convolutional layers.
Compared with regular GAN that maps input to a scalar, it
signifies which patch of input is real and fake. Furthermore,
the system optimizes sensitive patches by tracing back the
receptive field. However, these patches are overlapped to
further enhance perceptual details and connections. To sta-
bilize the training process, all the layers are Spectral Nor-
malized [23] and LSGAN [21] critic is utilized.

3.2. Objectives

Since random initialization of GAN often leads to model
collapse [33], it is significant to balance the training of both
generator and discriminator. To facilitate and stabilize its
convergence, the training process is divided into two stages.

At first stage, we only train the generator with L1 loss in or-
der to achieve high pixel accuracy. That means we perform
a PSNR-oriented optimization for the system, which is also
vital for stabilizing GAN training at second phase because
the generator already produces relatively good results. The
RGB image construction L1 loss and attention region L1
loss are defined as:

Lrep =E[||Gi(x) — y1]l1], (D

L =E[||G1(z) © Ga(x) — y1 © yal|1], ()

where Gi(x), Ga(z) are the output RGB image and
saliency map, respectively. While y;, yo are their corre-
sponding ground truth. The operator ® means Hadamard
product.

At second stage, we optimize the whole system by alter-
nately training the generator and discriminator. To discrim-
inate between the real images from the generated images,
we use LSGAN critic. The loss function of both generator
and discriminator are defined as:

Lo = SE[(D(Gr(z)) - 17, ®

Lp = SE[D@) - 1] + E(DE @), @)

where D is the discriminator. Jointly minimizing equation 3
and 4 yields minimizing the Pearson x? divergence between
generated samples and ground truth.



Although L1 loss facilitates constructing images with
less distortion, it leads to blurry details. To further enhance
visual quality, perceptual loss [15] has been demonstrated
to strengthen the high-frequency part and promote sharp
edges [33]. Instead of directly measuring the pixel-level L1
loss, perceptual loss computes the distance between two im-
ages in high-level feature space. To match more semantic
information, we utilize a deep layer of VGG-16 [30] net-
work pre-trained on ImageNet. The feature map activated
by ReLU [24] is very sparse, therefore we use output of
convolutional layer to represent semantics. It is defined as:

Ly = E[|¢(G1(x)) — ¢u(y1)ll1], ©)
where ¢;(x) is the features of the [ — th layer of the pre-
trained CNN. In our experiment, we use the convy 3 layer
of VGG-16 network pre-trained on ImageNet dataset.

The total loss function for generator at second stage is:

Loss = Lrgp + AaLla+ AgLg + )\pr (6)

where the trade-off parameters A4, A, and A, are empiri-
cally set to 0.5, 0.01, and 1, respectively.

3.3. Spectral normalization

As GAN architecture becomes more complicated, the
initial loss definition [5] often leads to unstable training.
Recently, extensive researches have leveraged many loss de-
signs such as f-GAN [25], LSGAN [21], WGAN [1] for
stabilizing learning process. However, the GAN framework
is still sensitive to perturbation of input, therefore effective
regularization methods are significant for generalizing in-
ference of GAN. To restrict solution space, WGAN-GP [6]
executes a well-designed weight decay technique when op-
timizing discriminator. Basically, it is relatively difficult to
control regularization factor while gradient penalty may re-
sult in the trained model losing information. The other reg-
ularization method is adding noise to input and performing
adversarial training [3]. Hence, the trained model is robust
to perturbation of data. However, the generation quality is
also affected. Instead of directly restricting data or gradi-
ent, Spectral Normalization [23] only adjusts the maximum
eigenvalue for weights. It remains the original scale infor-
mation of weight metrics thus lets GAN system meet 1-
Lipschitz condition. Moreover, it does not cost numerous
additional computational resources. By performing spectral
normalization to each convolutional layer of discriminator,
our system converges faster and more stable.

3.4. Two time-scale update rule (TTUR)

Based on derivation of original GAN [5], discrimina-
tor needs to be well trained to decrease Jensen-Shannon-
divergence (JSD). Normally, It needs more training itera-
tions for discriminator than generator. However, the con-
vergence of GAN training is still hard to estimate. Heusel
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et al. [8] proposed a two time-scale update rule (TTUR) that
executes individual learning rate for generator and discrim-
inator. TTUR enhances the general performance of GAN
and effectively prevent the mode collapse. At second stage,
TTUR with Adam optimizer [16] have been applied to pro-
posed system, which efficiently converges to a stationary
local Nash equilibrium.

3.5. Implementation details

We use the training set of Zurich RAW2RGB (ZRR)
dataset [11] to train the whole system. It contains 89000
paired images with a large diversity of contents, such as
sky, buildings, cars, and streets. For each RGB image,
we utilize pre-trained SalGAN to generate corresponding
saliency map. It serves as an implicit data augmentation,
which makes whole system more general and robust. All
the training images are pre-processed to 224 x 224. The
input RAW files and output RGB images are normalized to
[-1, 1]. The output saliency map is rescaled to [0, 1], which
conveniently represents attention region.

As aforementioned, the training process is divided into
two stages. First, we train a PSNR-oriented generator only
with L1 loss and attention loss for 10 epochs. The learning
rate is fixed to 2x 10~%. At second stage, we train the gener-
ator and discriminator collaboratively for 30 epochs. While
the initial learning rate for generator and discriminator are
1 x 10~* and 4 x 10~*, respectively. For optimization, we
use Adam optimizer [16] with 8; = 0.5, 52 = 0.999, and
batch size equals to 4. The learning rates are halved every
10 epochs. The parameters of network are initialized using
zero mean Gaussian distribution with standard deviation of
0.02. We perform reflection padding in the system to avoid
border artifacts. LeakyReLLU [20] activation function and
Instance Normalization [31] is attached to each convolu-
tional layer for both generator and discriminator except the
output layers. When performing back propagation, the RGB
image decoder branch is affected by all the objectives. We
implement our system with PyTorch framework and train
it on two NVIDIA GeForce GTX 1080 Ti GPUs. It takes
approximately 4 days to complete the whole 40 epochs.

4. Experiment

We evaluated both pixel fidelity and perceptual realism
of proposed GAN system for RAW to RGB mapping on
ZRR validation set (2139 pairs). Quantitative and qualita-
tive results for generated RGB images and full resolution
photographs are presented in next section. We also reported
our results of AIM 2019 RAW to RGB mapping challenge
on ZRR testing set (2462 pairs). Both validation and testing
images are cropped to 224 x 224 for evaluation. Finally,
we discussed the failure cases and future work of proposed
system.
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Figure 3. Comparison of generated results of different models. The first column shows the input RAW files. The second to last columns
represent the generated RGB photos by Pix2Pix (first stage), Pix2Pix (second stage), proposed architecture (only trained with L1 loss for
40 epochs), proposed approach (first stage), proposed approach (second stage), respectively.
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4.1. Evaluation metrics

In order to effectively assess the generation quality, the
two metrics Peak Signal-to-Noise Ratio (PSNR) and Mean
Opinion Score (MOS) are adopted. PSNR is widely used
to represent the ratio between maximum power of signal
and power of noise that affects the fidelity quality. In order
to adapt to different dynamic range, PSNR is expressed in
terms of the logarithmic decibel scale. A generated image
with high PSNR means there is lower probability to be noisy
and distorted. It is defined as:

PSNR=10- lOglo(

2552 . W - H )
S S (w, h) = K (w, )2
(7

where I and K represent generated image and ground truth,
respectively. Their width and height are given by W and H.

However, there is no strong relationship between PSNR
and visual quality from human opinion. To measure the
perceptual experience, MOS is commonly utilized in im-
age quality assessment. As a subjective metric, MOS is a
single rational number, which is given by human assessors.
Compared with PSNR, MOS is more reasonable to repre-
sent overall perceptual quality of the system.

4.2. Quantitative analysis

To demonstrate that proposed method produces percep-
tually plausible RGB photos, we trained a Pix2Pix frame-
work [14] with same settings (two training stages, learn-
ing rate, batch size, and epochs). We compared the aver-
age PSNR using generated 2139 samples by Pix2Pix frame-
work and proposed approach on ZRR validation set. As
shown in Table 1, the proposed approach improves general
Pix2Pix in about 20%. The saliency map prediction branch
of proposed approach enhances the system to learn visual
saliency information although training set is limited. More-
over, saliency map provides more low-level details for sys-
tem to construct RGB images. On the other hand, we added
perceptual loss and adversarial loss at second stage. The
system gets an improvement of about 0.5 with respect to
first stage. We also validated the proposed system trained
only with L1 loss for 40 epochs. The PSNR equals to
22.244904, which means the system trained with full ob-
jectives outperforms trained only with L1 loss.

For the testing phase, the PSNR is 21.91 on ZRR testing
set (2462 pairs) [11]. We also evaluated the average time for
our model to process the testing images of 224 x 224 res-
olution. We ran the model on test machine with Intel Core
19-9900K CPU, @ 3.60 GHz, 8 cores and single NVIDIA
GeForce GTX 1080 Ti GPU. The mean value of overall 20
computations is adopted. For each input image, it takes
0.03571s (27.98 images/second). The proposed system is
suitable for real-time usage.
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Method | Pix2Pix 2nd Ours 1st Ours 2nd
PSNR 19.491088  22.067571 22.455825
SSIM 0.727142 0.798382 0.798674

Table 1. Comparison of proposed method with Pix2Pix. The ’1st’
and *2nd’ represents the two training stages.

Figure 5. Failure examples. The proposed method is sensitive to
small details in first row. And second row shows unreasonable
blurry results.

4.3. Qualitative analysis

We randomly select some generated samples from
Pix2Pix and proposed system, as shown in Figure 3. To
compare the perceptual effect, we illustrate some patches
for two training stages from both Pix2Pix [14] and proposed
approach. Because both systems are trained only with L1
loss at first stage, the generated samples are obviously more
blurry than second stage. There is artifact in the images pro-
duced by Pix2Pix due to Batch Normalization [13]. More-
over, we show the results produced by proposed architecture
trained only with L1 loss for 40 epochs. Note that, our pro-
posed system is optimized by whole objectives for last 30
epochs. It demonstrates that adversarial training and per-
ceptual loss indeed enhance perceptual quality.



4.4. Full resolution results

As proposed system is a fully convolutional architecture,
it is possible to operate input images with any resolution al-
though it is trained by small patches (224 x 224 resolution).
However, restricted by memory, it is difficult to generate a
full resolution image (around 2000 x 1500 resolution) in
one forward process on a single 1080 Ti GPU. Therefore,
we perform a sliding window method to produce full res-
olution RGB photos patch-by-patch (maximum 768 x 768
resolution for small patch). It takes approximately 0.5 sec-
onds to render a full resolution image on same test machine.
The result RGB images are shown in Figure 4.

4.5. Failure cases

Figure 5 shows some examples where proposed method
fails to generate high-quality results. For the CNN based
models, reconstructing patches with too many details is
troublesome. For example, there is a little color bleeding
effects in coincident parts of branches and sky. We also il-
lustrate some examples that are unreasonably blurry. In the
future, multiple training datasets and more effective objec-
tive functions can contribute to better results.

5. Conclusion

In this paper, we address the problem of RAW to RGB
mapping using saliency map-aided Generative Adversarial
Network. The proposed architecture is trained in two stages
for fidelity and perceptual quality. In addition, we propose
an implicit saliency map data augmentation method tech-
nique to enhance the joint RGB image and saliency map
prediction. Experimental results show that our approach
has strong ability to construct perceptually plausible pho-
tographs even training data is limited.
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