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Abstract—Given a grayscale photograph, the colorization sys-
tem estimates a visually plausible colorful image. Conventional
methods often use semantics to colorize grayscale images. How-
ever, in these methods, only classification semantic information
is embedded, resulting in semantic confusion and color bleed-
ing in the final colorized image. To address these issues, we
propose a fully automatic Saliency Map-guided Colorization
with Generative Adversarial Network (SCGAN) framework. It
jointly predicts the colorization and saliency map to minimize
semantic confusion and color bleeding in the colorized image.
Since the global features from pre-trained VGG-16-Gray network
are embedded to the colorization encoder, the proposed SCGAN
can be trained with much less data than state-of-the-art methods
to achieve perceptually reasonable colorization. In addition, we
propose a novel saliency map-based guidance method. Branches
of the colorization decoder are used to predict the saliency map
as a proxy target. Moreover, two hierarchical discriminators
are utilized for the generated colorization and saliency map,
respectively, in order to strengthen visual perception perfor-
mance. The proposed system is evaluated on ImageNet validation
set. Experimental results show that SCGAN can generate more
reasonable colorized images than state-of-the-art techniques.

Index Terms—Colorization, Generative Adversarial Network,
Saliency Map.

I. INTRODUCTION

IMAGE colorization is the process of assigning plausible
and perceptual colors to each pixel in the input image. It

has found a wide array of applications in computer vision,
such as multispectral image colorization [1], [2], image com-
pression [3], cartoon colorization [4], [5], restoration of old
photographs and films [6], fake colorization detection [7] and
even assisting other tasks like classification and segmentation
[8]. However, without prior information on the colors of the
objects in the input intensity image, the colorization results
may vary largely from system to system. Notably, the semantic
confusion (which color should be assigned to each object in
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the image), color bleeding (spreading of colors beyond the
object boundary), edge distortion, and object intervention are
some key problems in the current automatic image colorization
tasks.

There are multiple possible colors for an object in the
image. Assigning a proper color to the object in an image
is still an open research problem in multiple domains. In
recent decades, a multitude of algorithms have been proposed
to solve this problem. These algorithms can be divided into
three possible categories: (1) Scribble-based methods [9]–[17],
(2) example-based methods [18]–[30], and (3) fully-automatic
methods [31]–[45]. The first two categories of algorithms
require human interactions for assigning reasonable colors to
various objects in the input-intensity image. As a result, these
algorithms are highly correlated with the rationality of the
human hints, which makes them labor-intensive and less robust
to errors. For example, the scribble-based methods utilize the
color hints, provided by the user, to assign different colors to
the objects in the image. Similarly, the example-based methods
require an additional color image to infer the chrominance
intensity of different objects in the input image.

On the other hand, fully automatic approaches utilize end-
to-end learning to directly learn the relationship between an in-
put grayscale image and the corresponding color embeddings,
without any human intervention. Most of these approaches
utilize the deep Convolutional Neural Networks (CNN). Nor-
mally they are trained on large-scale datasets such as ImageNet
[46] (1.3M images) and Places [47] (1.8M images) to encode
the semantic information for image colorization. For instance,
Larsson et al. [33] utilized hyper-column from a VGG-Net
[48] pre-trained on ImageNet for semantic feature extraction.
However, it requires high computational footprints which
makes the inference slower during test time. Iizuka et al. [38]
on the other hand jointly trained a classification sub-network
and auto-encoder stream. It not only obtains semantic features
but also establishes a reasonable scene context for colorization.
Based on a VGG-Net backbone, Zhang et al. [37] introduced
cross-channel encoding and class rebalancing techniques to
generate unimodal distribution of color embeddings.

The automatic image colorization systems achieve better
results. However, the problems of color bleeding and unrea-
sonable assignment of colors still exist. Figure 1 shows some
common examples of the failure cases of [37] and [44] on
some legacy photos. For instance, there is color bleeding in the
first column by methods [37], [44] since color of trees spreads
to crowd. Also, the roads and human faces are colorized in
blue (in column 4 and 5, respectively) by methods [37], [44].
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Fig. 1. Illustration of coloirzation results by [37], [44] and proposed method on old black and white photographs. The rows from top to bottom
represent grayscale input, colorization results of [37], [44] and proposed method and saliency map generated by proposed method, respectively. The red
rectangles highlight specific regions suffer from color bleeding or semantic confusion. Our model learns the different colorization representations in multiple
scenes: speech, countryside, landscapes, city street, and human portraits. Photos were taken from the US National Archives (public domain). Please visit
https://github.com/zhaoyuzhi/Semantic-Colorization-GAN (supplementary material) to see more colorization results.

It leads to semantic confusion effect in output images. To
address the problems, some regularization terms such as image
gradients [31] and segmentations [34] have been added to the
optimization process. However, these constrains are not useful
for some situations. Since image gradients cannot represent
semantics, it is hard for the colorization system to judge
the colors for objects with similar boundaries, e.g. trees and
crowd. In addition, only a few datasets include segmentation
labels with limited categories.

Considering these limitations, we propose to use saliency
map to improve the image colorization quality for following
three aspects. Firstly, it identifies perceptually significant re-
gions in the image. The colorization system can then be guided
to focus more on the key objects while less influenced by the
backgrounds. The key objects are richer in color while the
backgrounds often contain green and blue colors, e.g. trees
and sky. Moreover, it reduces the bias of the system to the
colors that make up the majority of images. Secondly, it assists
the network to localize objects at pixel level. It represents
semantically salient areas with relatively clear boundaries.
Thus, it is beneficial for colorization network to alleviate color
bleeding artifact. Finally, since saliency map is adaptive to

different objects in an image, it is convenient to be applied to
multiple datasets in colorization area.

Specifically, we perform colorization and predict saliency
map simultaneously by utilizing a Saliency Map-guided Col-
orization with Generative Adversarial Network (SCGAN) ar-
chitecture. The proposed SCGAN has the following advan-
tages. Firstly, it adopts dual encoders, one of which is a well-
trained VGG-Net [48] for extracting semantic information.
Since semantic information is implied in this VGG-based
encoder, the proposed system can distinguish plausible colors
for objects with similar edges. Secondly, the decoder of pro-
posed system has two branches for producing colorization and
saliency map, respectively. To augment visual salient area, we
compute multiplication of the two outputs to obtain a weighted
image representing salient areas, as shown in last row of Figure
1. Then, we leverage an attention loss to emphasize the salient
areas at training. Finally, it includes two discriminators for
entire image and weighted image, respectively. The adversarial
training strategy [49] enhances sharpness and color vividness
of images. Moreover, the saliency map branch better assists
the mainstream to generate plausible colorization.

In addition, conventional fully automatic colorization ap-
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proaches often require large training datasets such as ImageNet
[46] and Places [47]. The proposed SCGAN can be trained
on a relatively small dataset (e.g. subset of ImageNet, 0.13M
images). It utilizes a saliency map-based guidance method to
produce visually plausible colorization in the salient regions
in the image. We notice that acquisition of large dataset in
some low-level vision applications is much harder compared
to natural image colorization. For example, the multispectral
image colorization [1], [2], [50] requires complex imaging sys-
tem and precise alignment technique. The proposed saliency
map-based guidance method is beneficial to such applications.

Compared with the existing methods, the main contributions
of this paper are as follows:

1) We employ the saliency map as an additional proxy task
in the proposed SCGAN that improves the performance;

2) We propose a saliency map-based guidance method that
helps our system effectively predict a fine colorization with a
relatively small training dataset;

3) We firstly use an effective evaluation criterion CCI (Color
Colorfulness Index) to evaluate colorization quality and show
its high correlation with human observers;

4) We apply SCGAN architecture with saliency map-based
guidance method to multispectral image colorization and ob-
tain state-of-the-art results.

II. RELATED WORK

Scribble-based Colorization. Scribble-based colorization
method is the most straightforward way to achieve coloriza-
tion of grayscale image, but it is extremely labour-intensive.
It is based on prior color scribbles and then propagates
them to the rest of the image. Levin et al. [9] proposed
an optimization-based system and assumed that the adjacent
pixels with same illuminance could have similar colors. This
technique was enhanced using an additional adaptive edge
detection algorithm by Huang et al. [10]. Yatziv et al. [11]
proposed a fast colorization algorithm based on the concepts of
luminance-weighted chrominance blending. To enhance long-
range color propagation, Xu et al. [13] performed an affinity-
based edit scheme and Chen et al. [15] utilized the locally
linear embedding to model the linear combination for adjacent
pixels in a feature space. However, the main weakness is
that they only concentrate on one aspect of propagating local
or global color hints. The results are highly related to the
number and location of given color scribbles. To address the
ambiguity brought by sparse scribbles. Xu et al. [12] proposed
a novel approximation scheme requiring much less time and
memory and Paul et al. [51] proposed a 3D steerable pyramids
approach for occlusion handling. Since the aforementioned
methods require accurate scribbles for colorization, Zhang et
al. introduced an additional deep prior from a CNN to ensure
plausible colorization when no given scribbles. Those methods
are still easy to overfit to scribbles. Moreover, scribbles with
similar pixel locations often lead to color bleeding in colorized
images.

Example-based Colorization. In contrast, the example-
based colorization approaches exploit color information from a
reference image to guide colorization. It reduces the difficulty

of choosing many color scribbles. They mainly match spatial
features between reference image and input grayscale image
by statistical analysis [20], [26]. This idea was enhanced by
characterizing the image patches using GMM [27], discrimi-
nating different regions by segmentation maps [25], predicting
probability for each pixel by global optimization [22], and
modelling color selection by energy-minimization method
[18]. Moreover, superpixels [19], [21], [24] were utilized
to model the correspondences between grayscale input and
reference. To alleviate effort of selecting proper reference
images, Chia et al. [29] developed an image retrieval method
to download appropriate reference images from Internet. How-
ever, those methods are highly based on references which
are remarkably close to grayscale input. The colors of output
images often appear unnatural when given images not similar
to input. In order to generalize to more reference images, He
et al. [23] and Zhang et al. [52] applied deep image analogy
technique and neural network to match the semantics of the
target image and reference accurately. In addition, researchers
used more types of references as guidance for colorization
such as words [53], [54] and complete sentence [55]. However,
the combination of examples and input grayscale image is
difficult in terms of transferring examples to useful color
information.

Fully Automatic Colorization. Recently, fully automatic
colorization methods have outperformed traditional methods
due to their robustness and generalization. They are based on
CNN to learn mapping from grayscale to color embeddings as
a self-supervised task chiefly. Cheng et al. [40] first adopted a
deep neural network to colorize the images based on the ex-
tracted features from different patches. However, their training
dataset is too small and network structure is simple. Without
using handcrafted features, Larsson et al. [33] proposed an
end-to-end CNN architecture. The hyper-column of a pre-
trained VGG-Net is utilized to augment original grayscale
input; whereas its memory consumption is too high. Iizuka et
al. [38] developed a two-stream architecture to jointly predict
the color embedding and category of the scene. The semantics
from classification sub-network are merged into mainstream by
a fusion layer. Zhang et al. [37] adopted a VGG-styled network
with added depth and dilated convolutions. They introduced
cross-channel encoding and class rebalancing techniques to
resolve the inherent ambiguity and multimodal nature of the
colorization problems. However, those methods retain com-
mon artifacts in colorization area such as color bleeding and
semantic confusion. To address these problems, Zhao et al.
[34], [35] added segmentation information and Lei et al. [43]
proposed a bilateral loss for self-regularization.

Moreover, some generative models have been leveraged for
multimodal colorization. Isola et al. [36] proposed a general
image-to-image translation framework based on conditional
GAN [49]. The experimental results demonstrated that the
vividness of colorized images was enhanced due to adversarial
training. Deshpande et al. [31] utilized a mixture density
network (MDN) to map the grayscale images to GMM. There
are numerous possible vectors sampled from GMM and each
corresponds to a colorization type. It was enhanced by Mes-
saoud et al. [56] by introducing structural consistency. Based
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on capturing dependencies of neighbouring pixels to ensure
color consistency, Royer et al. [32] and Sergio et al. [42]
developed a PixelCNN network to produce multiple plausible
and vivid colorizations for a given grayscale image.

Salient Object Detection. The early works of salient
object detection (or saliency detection) were based on hand-
crafted features such as color variation [57], boundaries [58],
and center prior [59]. They preserve the edges of images
well but ignore the integral structural features. To predict
robust saliency maps, Li et al. [60] proposed a multiscale
feature extraction for superpixel saliency detection. Liu et
al. [61] combined image-level and superpixel-level features
into saliency detection. However, hand-crafted features are
hard to generalize to different scenes. Thus, the CNN is
adopted to improve generalization ability of saliency detection
algorithms. Researchers developed diverse architectures such
as recurrent network [62], encoder-decoder [63]–[66], feature
pyramid network [67]–[71] to fuse low-level edge details and
high-level semantics. Some methods [64], [65], [69] used
attention mechanism, which further improved the accuracy due
to use of dense connections for each pixel. Recently, some
extensions focus on improvement of network architecture to
effectively use features. For instance, Liu et al. [66] designed a
pooling-based pyramid architecture to accurately locate salient
areas. Pang et al. [72] effectively used multi-level and multi-
scale information and proposed a feature aggregation module.
Zhao et al. [70] proposed a pyramid attention network that
integrates different levels of information from VGG-Net. In
conclusion, edge guidance, attention mechanism and semantics
greatly improve the performance of saliency detection. In this
paper, we choose the approach [70] to generate robust and
accurate saliency maps.

Generative Adversarial Network. The GAN was proposed
by Goodfellow et al. [49] to generate data in an unsupervised
manner. It contains a generator that learns to produce realistic
data and a discriminator that judges whether the input is gener-
ated by generator or sampled from ground truth. The system
is trained to minimize the JS-divergence between generated
samples and target dataset. To stabilize its convergence, some
advanced divergences for estimating feature disparity were
proposed, such as f-divergence [73], Pearson χ2 divergence
[74], and Earth-Mover distance [75], which was further im-
proved by adding a gradient punishment [76]. Compared to
traditional pixel-level loss, the adversarial loss minimizes the
various divergences between the generated images and the
real images in the target domain, leading to a substantial
boost of the results. The proposed SCGAN framework aims
at producing perceptually high-quality colorizations.

Comparative Analysis of Colorization Methods. Early
colorization methods often require human hints such as scrib-
bles and reference images as guidance. They [10], [16], [24],
[25], [30] mainly utilized hand-crafted features including low-
level SIFT or edges and high-level scene or location categories.
The limitation of these works is not general to images in
different scenes. Recently, deep neural networks have been
utilized to address this problem. They mainly adopted pre-
trained networks to enhance colorization quality but individual
optimization skills. Thus, their colorization effects are dif-

ferent, e.g. classifying color for pixels [37] promotes very
colorful results; training with scene classification [38], [44]
ensures overall color correctness; contextual loss [52], [77]
facilitates color similarity with ground truth. Moreover, to
alleviate color bleeding and semantic confusion, additional
constrains such as gradient loss [31], segmentation loss [34],
[35], and bilateral loss [43] were proposed. They worked well
in some circumstances; whereas saliency map is more general
to all images compared with them. In this paper, we propose to
extract semantics and use a novel joint training with saliency
detection.

III. METHODOLOGY

A. SCGAN Architecture

An overview of the SCGAN framework is shown in Figure
2 and Figure 3. Our method is based on a hierarchical GAN
architecture that produces colorizations and saliency maps
from grayscale images jointly. It consists of four parts: global
feature encoder, main colorization network, saliency predic-
tion network, and patch-based discriminators. The first three
components constitute generator. The global feature encoder
adopts VGG-16-Gray [48] architecture, all max-pooling layers
of which are replaced by convolutional layers with stride of
2. While the main colorization network is based on U-Net
structure [78] with skip connection between each encoder layer
i and decoder layer n − i with same resolution, where n is
the total number of layers, as green lines shown in Figure
2. It effectively prevents gradient vanishment and accelerates
convergence. In order to fuse global information and local low-
level information, the resultant layer of global feature encoder
is concatenated with the middle layer of main colorization
network. Moreover, three layers of the decoder are used
to predict the saliency map with same spatial resolution as
colorization.

Two discriminators share the same PatchGAN [36] archi-
tecture, as shown in Figure 3, which effectively models the
image as Markov random field and strengthens high-frequency
correctness in local image patches. The first discriminator
judges the colorized image and ground truth color image. In
addition, we perform element-wise product on colorized image
with generated saliency map to obtain a weighted image.
Similarly, we can obtain a ground truth weighted image by
same computation scheme. Then, we feed the pair to the
second attention-based discriminator, which judges whether
the input is real weighted image or not. Based on the work
in [36], we choose 70×70 PatchGAN architecture including
reasonable parameters for better visual quality.

B. Attention Mechanism and Training Schedule

Saliency maps are commonly used to explicitly represent the
visual attention areas. Based on this observation, we assume
these salient areas have more colorful patterns or higher
variance, which are essential for enhancing rare colors when
developing a colorization algorithm. To emphasize the areas,
we propose to perform element-wise product between the col-
orful image and its saliency map. The output weighted image
includes regions rich in color while filtering out flatten regions,
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Fig. 2. Architecture of the proposed SCGAN generator. It receives a grayscale image as input and predicts a colorized image with a corresponding saliency
map. The scalar denotes number of channels for relevant block. Different colors represent the distinct parts of generator architecture.
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Fig. 3. Architecture of the proposed SCGAN discriminators. The inputs
of the two discriminators (color image discriminator and attention-based
discriminator) are pairs of colorized images and the images with attention
region, respectively.

as shown in Figure 3. By enforcing an additional attention loss,
as represented in Equation (2), on weighted image, the saliency
prediction network assists the main colorization network in
revising its bottom layers. Therefore, this attention mechanism
serves as a kind of guidance for colorization.

Since GAN architecture is highly nonlinear, random ini-
tialization tends to converge to local minima. To facilitate
and stabilize its convergence, we defined a two-phase training
procedure. Firstly, SCGAN generator is only trained with
L1 loss, which can remove outliers so that the generator
achieves better generalization than L2 loss. Therefore, a stable
adversarial training process can be maintained by striding
a balance between generator and discriminators. At second
stage, we construct the whole SCGAN by alternately training

the generator and discriminators. Note that, the saliency map-
based guidance method exists in both stages.

C. Objectives

At first stage, the L1 losses for colorized image and
weighted image are jointly considered. Thus, they emphasize
both pixel fidelity and perceptually significant regions of the
generated images. The losses are defined as:

L1 = E[||Gc(x)− c||1], (1)

LA = E[||Gc(x)�Gs(x)− c� s||1], (2)

where x, c and s represent input grayscale image, ground truth
colorful image and saliency map, respectively. The Gc(x) and
Gs(x) are the colorized image and corresponding saliency
map. The operator � means element-wise product.

At second stage, we add two additional discriminators
Dc(∗) and DA(∗), respectively. The WGAN-GP loss [75]
items are defined as:

LG = −E[Dc(Gc(x))]− E[DA(Gc(x)�Gs(x))], (3)

LD = E[Dc(Gc(x))] + E[DA(Gc(x)�Gs(x))]

− E[Dc(c)]− E[DA(c� s)]
+ λE[(||Oc̈Dc(c̈)||2 − 1)2]

+ λE[(||Os̈Ds(s̈)||2 − 1)2]

(4)

where Equation (3) and the first four terms of Equation (4)
constitute original WGAN loss, the remaining of Equation
(4) is a gradient penalty. According to [76], we define c̈ and
s̈ sampling uniformly along straight lines between pairs of
points sampled from the synthesized images Gc(x), Gs(x) and
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ground truth images c, s, respectively. The gradient penalty
coefficient λ is set to 10.

In order to improve perceptual quality, we measure the
image semantic similarity in high-level feature space by per-
ceptual loss [79]. It is defined as:

Lp = E[||φl(Gc(x))− φl(c)||1], (5)

where φl(∗) represents the features of the l-th layer of the pre-
trained network. In our experiment, we use the ReLU [80]
activated conv3 3 layer of VGG-16 network pre-trained on
ImageNet dataset.

The total loss function of the generator for the second stage
includes Equation 1, 2, 3, and 5, which is given by:

Loss = L1 + λGLG + λALA + λpLp. (6)

IV. EXPERIMENT

A. Implementation Details

For training set, a subset of ImageNet [46] (0.13M images)
is utilized, which is only one tenth of the size of training
dataset comparing with the state of the art [33], [37], [38],
[43]–[45]. We randomly sample images from 1000 categories,
corresponding to the proportion of the entire dataset. It
provides enough modes for SCGAN to learn the mapping
robustly. The images are rescaled to 256×256. They are
normalized within [-1, 1] range and an additive Gaussian noise
with standard deviation of 0.005 is added. In addition, the
corresponding saliency maps are generated by [70], which are
set as ground truth. They are normalized in [0, 1] range, which
represent different levels of significance for salient regions.

For network architecture, the global feature network is
trained from scratch until its Top-1 accuracy is verified to be
sufficiently high and stable. It adopts VGG-16-Gray architec-
ture, where each max-pooling layer is replaced with strided
convolutional layer to maintain more spatial information.
Batch normalization [81] and LeakyReLU activation function
[82] are attached to each convolutional layer of SCGAN except
the input and output layers. The reflection padding scheme
is utilized to avoid border effects. Moreover, with spectral
normalization [83] attached to each discriminator layer, the
SCGAN meets 1-Lipschitz continuity.

For optimization details, the parameters of SCGAN are
initialized using zero mean Gaussian distribution with standard
deviation of 0.02 except global feature network. We train
SCGAN generator with L1 loss and attention loss for 10
epochs at first stage and the learning rate is fixed to 2×10−4.
At the second stage, we train the generator and discriminators
collaboratively for 30 epochs. The initial learning rate for both
generator and discriminator are 1× 10−4 but halved every 10
epochs. We use Adam optimizer [84] with β1 = 0.5, β2 =
0.999 and batch size of 8. The discriminators and generator
are trained alternately until the SCGAN converges. The trade-
off parameters λG, λA, and λp are empirically set to 0.05, 0.5,
and 5, respectively. We implement our system with PyTorch
framework and train it on a NVIDIA Titan Xp GPU. It takes
approximately 7 days to complete the whole training process.

B. Experimental Settings

Dataset. To assess colorization quality, we set up 10000
images from ImageNet validation set [46], same as in [33],
[37] for evaluation. They are randomly selected and have
a balanced representation for ImageNet categories. All the
validation images encoded as grayscale are excluded and
rescaled to 256×256. To further demonstrate the effectiveness
of several network components, we use both quantitative and
qualitative analysis.

Quantitative Metrics. On the one hand, we apply pixel-
level PSNR (peak signal to noise ratio) and SSIM (structural
similarity index) [85] metrics to evaluate the pixel fidelity
of an image. On the other hand, since there might be many
reasonable color guesses given the grayscale input, we use
high-level Top-1 accuracy (computed by a well-trained VGG-
16 [48]) to measure semantic interpretability of synthesized
images.

Color Colorfulness Index. In addition, we firstly use a new
non-reference evaluator called CCI (color colorfulness index)
for colorization evaluation. Basically, CCI is a professional
index to measure the color vividness and naturalness [86]–
[88]. Compared with traditional PSNR, CCI focuses more on
color shift and saturation level. It can be viewed as a significant
index for evaluating color reasonability of generated images
and is defined as:

CCIk = Sk + σk, (7)

where Sk is the average saturation of image k, and σk is the
standard deviation. Note that CCI varies from 0 (achromatic
image) to ∞ (most colorful image). However, the optimum
range of CCI for a generated color image is between 16 and
20 based on large amount of experiments [88]. The correlation
of optimum range of CCI with human perception equals to
95.3%. Since the human visual system (HVS) captures color
information in opponent color space [87], [88], the RGB image
is first transformed into opponent color space to compute CCI
value. The transformation functions are defined as:

rg = R−G, (8)

yb = (R+G)/2−B. (9)

Hasler et al. [86] proposed a more accurate method for
computing CCI, which is used in our experiment and defined
as:

CCIk = σrgyb + 0.3µrgyb, (10)

σrgyb =
√
σ2
rg + σ2

yb, (11)

µrgyb =
√
µ2
rg + µ2

yb, (12)

where σ∗ and µ∗ represent standard deviation and mean value,
respectively. We calculate the ratio of the number of generated
images in optimum range to the whole 10000 validation
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Larsson et al. Iizuka et al.Zhang et al.Isola et al. SCGAN Ground TruthGrayscale DeOldify Lei et al. Vitoria et al.

Fig. 4. Comparison of colorization results between the proposed SCGAN and the state-of-the-art approaches [33], [36]–[38], [43]–[45] by 10 samples. The
first column shows the grayscale input images. Column 2-9 show automatically generated results from the state-of-the-art approaches and the proposed method.
The final column shows the ground truth images.

images, which represents the reasonability degree for the
colorization system.

Human Perceptual Evaluation. Since the evaluation of
color naturalness, colorfulness, and color bleeding removal are
highly subjective, we perform a qualitative perceptual evalua-
tion. The color naturalness denotes whether colorized images
are similar to real-world images. It emphasizes color reason-
ability rather than high brightness or vividness. Conversely,
color colorfulness score is high as long as generated images are
very colorful, even though the color is not authentic. Moreover,

color bleeding artifact exists in an image when color of one
object permeates through other objects. The color bleeding
removal judges the ability of colorization systems to prevent
or reduce such artifact.

There are overall 20 observers participating in the test. Each
observer was given 30 groups of grayscale images, ground
truth colorful images, and images colorized by different algo-
rithms. For each result, the observer was required to decide its
color naturalness and severity of color bleeding by scoring 0-
10. For instance, 0 represents the most achromatic or severely
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TABLE I
COMPARISON RESULTS OF SCGAN AND STATE-OF-THE-ART FULLY AUTOMATIC COLORIZATION ALGORITHMS.

Method PSNR SSIM Top-1 Accuracy CCI Ratio Color Naturalness Color Bleeding Removal Color Colorfulness
Ground Truth / 1 63.44% / / / /
Grayscale 23.23 0.9394 49.78% / / / /
Larsson et al. 24.42 0.9229 55.16% 14.93% 9.14 8.58 8.22
Isola et al. 23.25 0.9386 52.29% 11.26% 8.56 7.93 8.96
Zhang et al. 22.49 0.9153 53.97% 3.300% 9.05 7.10 9.50
Iizuka et al. 24.32 0.9464 53.05% 19.60% 9.17 8.34 8.76
DeOldify 23.14 0.9194 53.45% 14.73% 9.20 8.57 9.01
Lei et al. 22.96 0.9146 51.46% 11.40% 8.02 7.14 7.45
Vitoria et al. 24.32 0.9273 53.65% 11.24% 9.03 8.24 9.17
SCGAN 23.80 0.9473 53.47% 21.41% 9.32 8.68 9.04

Ours(full) Larsson et al. Isola et al. Zhang et al. Iizuka et al. DeOldify Lei et al. ChromaGAN
Methods

C
C
I
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20
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40
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Fig. 5. Box plot of CCI distributions for the proposed SCGAN and state-of-
the-art methods.

color bleeding images and 10 indicates the reverse. Finally,
we calculate the average score across all 30 colorized images
and from every observer.

C. Comparison with State of the Art

We utilize 7 state-of-the-art fully automatic algorithms [33],
[36]–[38], [43]–[45] for comparisons. Some colorized results
of proposed SCGAN and other methods are shown in Figure
4 for qualitative measurement. The results from [33], [38],
[43] look more unsaturated than others in the second and fifth
columns. In the third and fourth columns, there is semantic
confusion effect. For instance, the grass of fourth row from
[36], [37] is polluted since the methods fail to classify grass
and wave with similar jagged edges. Moreover, the color of
sea permeates through fish, as shown in fifth row from [37],
[44], [45]. In sixth row from [33], [36], [38], [44], the colors
of some fruits bleed into others. However, the results from
proposed SCGAN are more reasonable and natural. For human
perceptual evaluation, the scoring results are summarized in
Table I. The SCGAN has better performance than other
methods since it produces more natural colors. The saliency
map could provide attention segmentation for SCGAN, which
is beneficial for removing color bleeding effect.

In addition, the results of quantitative metrics are shown
in Table I. SCGAN ranks first in the SSIM metric. It means
that proposed system could accurately model the perceptual
structure of reconstructed images. As PSNR is not highly
related to human visual system (HVS) [85], SSIM is proposed

to grasp the structural characteristics (luminance, contrast,
and structure) of the image. We think SSIM is better to
estimate whether the colorization is distorted or not. The
proposed SCGAN with high SSIM can generate structural
consistent results compared with original color images, which
demonstrates the colorization is more reasonable. The SCGAN
also has sound results across other quantitative evaluators.

The CCI distributions of all validation images for different
algorithms are shown in Figure 5. On the one hand, methods
[36], [37] have larger CCI means and variances than others, in-
dicating that the colorization is very saturated and color shifts
very much in many generated images, respectively. Moreover,
the method [37] has the best performance of color colorfulness
but the worst color bleeding removal. It demonstrates CCI
metric focuses more on color reasonability and contrast. On
the other hand, methods [33], [38], [44], [45] obtain rational
CCI distribution and good PSNR and SSIM values since they
generate more natural colorization. But they have less scores
in perceptual evaluation and SSIM than SCGAN. Finally,
the proposed SCGAN occupies the most compact distribution
over CCI near the optimal range [16, 20] than other methods
obviously. It demonstrates that our system produces plausible
colorization and has less probability to encounter semantic
confusion and color bleeding.

The human perceptual evaluation indicates that SCGAN
achieves the best performance over color naturalness and color
bleeding removal. Since saliency map assists the system to
retain a clear separation of foreground and background, the
color bleeding effect of SCGAN is less than other methods.
Moreover, we use attention loss with adversarial training in
SCGAN. They promote the system to strengthen colorization
on key objects. Thus, SCGAN produces more natural coloriza-
tions. Zhang et al. [37] obtains the highest color colorfulness
due to its classification-based training scheme. From these
experiment results, we notice that CCI ratio metric is highly
related to color naturalness. When the average of CCI is very
high, the system tends to produce colorful samples, although
they may be not natural. However, it cannot represent the
ability of removing color bleeding since it focuses on the
global characteristic of images.

D. Ablation Study

In order to further demonstrate the effectiveness of several
network components, we analyze different components of our
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Grayscale w/o perceptual lossw/o GAN lossw/o attention loss SCGAN (full) Ground Truthw/o global featurew/o pre-weightswith LSGAN loss with L2 loss

Fig. 6. Comparison of colorization results of different ablation study settings and full SCGAN. The first column shows the grayscale input images. Column
2-9 represent the colorization results of different settings. The final column is the ground truth colorful images.

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDY ON 10000 IMAGENET

VALIDATION SET

Method PSNR SSIM Top-1 Acc CCI Ratio
w/o attention loss 23.81 0.9368 52.34% 18.56%
w/o GAN loss 23.28 0.9305 52.89% 20.45%
w/o perceptual loss 23.80 0.9443 52.11% 21.31%
with LSGAN loss 23.46 0.9390 53.42% 20.86%
w/o pre-weights 23.15 0.9280 52.59% 18.20%
w/o global feature 23.61 0.9356 52.16% 17.55%
with L2 loss 23.67 0.9436 53.26% 19.58%
SCGAN (full) 23.80 0.9473 53.47% 21.41%

system on validation dataset quantitatively. Basically, there are
7 settings to exclude some parts from original structure:

1) SCGAN w/o attention loss. Drop the saliency prediction
network and its corresponding discriminator in order to ana-
lyze the effect of attention mechanism of system. We utilize
twice amount of data (one fifth of ImageNet training set) for
training to demonstrate the effectiveness of saliency map-based
guidance method;

2) SCGAN w/o GAN loss. Drop the two discriminators of
colorized images and weighted images, with the adversarial
training to analyze the adversarial loss in SCGAN. This setting
will not affect the architecture of generator;

3) SCGAN w/o perceptual loss. Drop the perceptual loss

at second stage. This setting only changes the optimization
method, while the network architecture is remained;

4) SCGAN with LSGAN loss. Replace original WGAN-
GP training strategy with LSGAN [74] at the second stage. It
minimizes the Pearson χ2 divergence between the generated
samples and ground truth;

5) SCGAN w/o pre-weights. Initialize the parameters of
global feature network using Gaussian distribution. It evaluates
the utility of pre-trained weights for global feature network
since SCGAN architecture is unchanged;

6) SCGAN w/o global feature. Delete the global feature
network to analyze the effect of this module. Although it
will reduce complexity of the system, the main idea of this
setting is to evaluate the effectiveness of semantic context
information;

7) SCGAN with L2 loss. Use L2 loss instead of L1
loss at both training stages. The optimization method remains
unchanged.

As shown in Figure 6, the full SCGAN has the best
perceptual performance compared with the six ablation study
settings. If global feature network or its pre-trained weights are
removed, the color of generated images is unimaginative. The
system without global semantics predicts wrong colorizations
and causes semantic confusion. The attention loss emphasizes
the significant parts, thus the main objects in colorizations
are clear separated from backgrounds. For instance, the color
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SCGAN (full) Ground TruthGrayscale SCGAN (w/o Sal) Ground TruthSCGAN (full) Weighted image

Fig. 7. Attention representation of the proposed SCGAN. The columns from
left to right indicate that input grayscale images (1st), colorizations generated
by SCGAN without saliency map (2nd), colorizations generated by full
SCGAN (3rd), ground truth colorful images (4th), saliency maps generated
by full SCGAN (5th), ground truth saliency maps (6th) and weighted images
(7th), respectively. The weighted images are obtained by the multiplication of
two outputs from SCGAN full system.

of chicken in Figure 6 first row is obvious for full SCGAN;
whereas the edges between chicken and background are blurry
for system without attention loss. In addition, the perceptual
loss and GAN loss enhance the sharpness of colorization. In
Figure 6 column 3-5, the samples are less natural and colorful
than full SCGAN.

The quantitative analysis is summarized in Table II. Firstly,
if visual saliency information and attention branch are removed
(setting 1), the system tends to generate samples with shifted
distribution over CCI. Although we utilize double amount of
data to train the system, it lacks visual saliency information
so that the optimization is altered. Moreover, we also train
the system without attention loss using same data (one tenth
of ImageNet training set) compared with normal process.
The performance is still inferior to full losses. Secondly,
GAN loss (setting 2) promotes the SCGAN to produce more
colorful images. The perceptual loss (setting 3) facilitates
the semantic interpretability of system and generates sharper
images. L1 loss performs slightly better than L2 loss (setting
7) according to color abundance. Thirdly, the SCGAN without
global feature network or its pre-trained weights (setting 5 and
6) have much worse ability to represent the semantics, leading
to bad results over the metrics, especially classification accu-
racy. Finally, SCGAN with LSGAN loss (setting 4) produces
worse results than the WGAN-GP loss. In conclusion, each
component of the proposed SCGAN is indispensable.

31.29%

30.52%

variance = 2.55e+03

variance = 2.73e+03

random
patch

salient
patch

unsalient
patch

26.56%

variance = 3.23e+03

Histogram - Salient Regions Histogram - Unsalient Regions

Histogram – Randomly Selected Regions

Fig. 8. Illustration of histogram of H channel for salient, unsalient and
randomly selected regions. The percent represents the ratio of green, cyan,
and blue color to all colors. The figure at lower right corner represents the
patch selection scheme for the experiment. The rectangles with different colors
imply 3 kinds of patches. The bird image is a training sample from ImageNet
dataset.

E. Saliency Map-based Guidance Method

The SCGAN produces colorization with corresponding
saliency map for grayscale image, which enhances the atten-
tion interpretation ability. As aforementioned, saliency map
provides attention intensity and segmentation information [89]
in an unsupervised manner. We illustrate the attention region
by the multiplication between the colorization and saliency
map and comparison with SCGAN without saliency map,
as shown in Figure 7. Firstly, the foreground objects are
obviously highlighted in all generated colorizations (last col-
umn of Figure 7). The saliency maps may contribute to less
color bleeding effect since the foreground and background
are well separated. Secondly, the colorizations generated by
full SCGAN are more colorful than it without saliency map,
especially the key objects. For instance, in 1st and 4th rows,
the cheetah and bird colorized by full SCGAN are more
realistic. As a proxy task, the generated saliency map assists
the system to pay more attention to visually important regions.
This mechanism can be viewed as a guidance, making SCGAN
more efficient at training stage.

In order to further demonstrate the saliency map is more ef-
ficient, we propose to compare the variance of color for salient
regions and the opposite. To measure color characteristics, the
H channel in HSV color space is utilized in our experiment.
Since the saliency map is irregular, we alternatively choose
small patches (64×64 in experiment) of each training image
to include high response area. The definition of salient region
in RGB image is that there should be at least 80% pixels
having high value in same spatial location of corresponding
saliency map. Conversely, unsalient region indicates the no
response area. For fair comparison, we also count random
regions as reference, as shown in Figure 8. The H value
represents the color category, expressed by angle in HSV color
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Ground
Truth

Input

Pix2Pix

Pix2Pix
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Fig. 9. Comparison of multispectral image colorization results between
the proposed SCGAN and other approaches [2], [36]. The first row is the
multispectral input while last row is ground truth visible RGB images. Row
2-6 represent colorization results of proposed SCGAN and other methods. We
highlight two patches in each pair and the location is indicated by green and
yellow rectangles.

TABLE III
QUANTITATIVE RESULTS OF MULTISPECTRAL IMAGE COLORIZATION ON

KAIST VALIDATION SET

Method PSNR SSIM Saliency Map Guidance
Pix2Pix 23.55 0.8165 -
Pix2Pix+Sal 23.53 0.8164 X
UResNet 23.66 0.8219 -
UResNet+Sal 23.72 0.8244 X
SCGAN 24.59 0.8396 X

space. The H variance of salient regions is much larger than
unsalient regions that demonstrates they contain more colors.
At training, the saliency map with attention loss stresses such
regions, which contributes to the regression of diverse colors.

Moreover, the colorization system tends to learn green
and blue colors first (please see supplementary for examples)
since they are common in natural images, e.g. lawn and sky.
The salient regions have less percent (26.56%) of green-blue
range than randomly selected regions (30.52%) and unsalient
regions (31.29%), as shown in Figure 8. Thus, other colors
are more probable to be utilized for SCGAN optimization.
It can be regarded as a color augmentation. We believe this
mechanism enhances colorization system to produce more
plausible results.

Grayscale

DeOldify

SCGAN

ColouriseSG

Fig. 10. Comparison of other legacy image-specialization colorization algo-
rithms. The first row is the grayscale input. Row 2-4 are colorization results
of the proposed SCGAN, DeOldify [45], and ColouriseSG [90], respectively.

F. Colorizing Multispectral Images

In order to further verify the advance of SCGAN architec-
ture and saliency map-based guidance method, we perform
a multispectral image colorization experiment on KAIST
multispectral pedestrian detection dataset [50]. There are
four network architectures used for comparison: Pix2Pix [36]
and it with proposed saliency map-based guidance method
(Pix2Pix+Sal), UResNet [2] and it with proposed saliency
map-based guidance method (UResNet+Sal), and the proposed
SCGAN. The L1 loss is adopted for optimization while
attention loss with same trade-off parameter λA is utilized
for Pix2Pix+Sal, UResNet+Sal and SCGAN. Each network is
trained for 20 epochs from scratch. Some colorized results are
shown in Figure 9. If the network is trained with attention loss,
the output is richer in color and clearer, e.g. the cars in Figure
9. The results from SCGAN are sharper than other methods.
Moreover, the quantitative analysis on KAIST validation set
is summarized in Table III. With saliency map-based guid-
ance method, UResNet can obtain higher PSNR and SSIM
values. Since the KAIST dataset only contains approximately
90000 training pairs, which are much less than ImageNet, the
function of the proposed saliency map-based guidance method
is evident. The SCGAN framework achieves the best perfor-
mance across all the methods, since the convolutional layers of
global feature network are general to multispectral images that
boost the performance. It demonstrates the SCGAN network
architecture is also more advance.

G. Colorizing Legacy Photographs

We also test SCGAN on legacy black and white photographs
and illustrate the colorization results along with the results
of two recent open-use automatic colorization systems [45],
[90], as shown in Figure 10 and 11. Due to the age and
type of past photos and films, the statistic details are quite
different from our training set and their edges are quite
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Fig. 11. Colorization results on historical photographs. Our colorization system still predicts visually high-quality reasonable images. The photos were taken
from the US National Archives (Public Domain). For more colorized legacy photographs, please see the supplementary material.

Grayscale Gupta et al.Welsh et al.ReferenceSCGAN Bugeau et al. He et al.

Fig. 12. Comparison of colorization results between the proposed SCGAN and the state-of-the-art exemplar-based algorithms [18], [23], [24], [26]. The first
column shows the automatic colorization results of proposed method. The second column shows the grayscale input images. The third column is the references
for remaining four algorithms, which are shown in column 4-7.
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Fig. 13. Comparison of the two types of saliency maps. The left part of the figure includes the samples from ImageNet training set; whereas the right part
represents the colorization results by SCGAN trained with different saliency maps. The first row and last row represent the grayscale input and ground truth
RGB images. The saliency maps from fixation prediction and salient object detection are computed by [91] and [70], respectively.

blur. However, SCGAN could produce plausible colorizations,
which demonstrates its strong fitting ability. Since the training
samples and legacy photographs are both real-world images,
we further assume that SCGAN tends to learn general infor-
mation primarily. During the optimization process, the system
first reconstructs the profile of the objects and background.
Then, it adds simple colors, like green and blue. Finally,
it fixes the details and attaches special colors (please see
supplementary material for illustration). It indicates that CNN-
based models have strong ability to capture low-level image
statistics [92] while natural images have similar statistical
features. It demonstrates that SCGAN has great generalization
ability on legacy photographs.

H. Comparison with Example-based State of the Art

We also compare our system with state-of-the-art example-
based algorithms [18], [23], [24], [26]. We report the com-
parison results in Figure 12. All the test grayscale images are
accompanied with corresponding references. Compared with
the example-based methods, the proposed SCGAN can still
generate realistic and reasonable colorizations even though
there are no references. The color styles of the images gen-
erated by the proposed method are implied in the training
strategy and network architecture.

I. Discussion on the Usage of Saliency Maps

Basically, there are two methods [93], [94] to label the
“ground truth” saliency maps: fixation prediction [91], [95]–
[100] and salient object detection [57]–[72], [101], [102]. The
saliency maps from fixation prediction record the eye fixations
of a user; whereas the saliency maps from salient object
detection focus more on entire key objects. We show some
saliency map samples generated by fixation prediction [91]
and salient object detection [70] in Figure 13, respectively. The
saliency maps from salient object detection have clearer edges
of objects than from fixation prediction, which are beneficial
for removing color bleeding artifact. Also, the key objects
have more vivid colors than other areas. To compare the
effects of two types of saliency maps, we additionally train
the SCGAN using the saliency maps generated from fixation

prediction [91] and salient object detection [70], respectively.
The training strategies for them are the same. Some generated
saliency maps and colorization samples are shown in Figure
13. In first three columns of right part of Figure 13, there are
less color bleeding artifacts for SCGAN with saliency maps
from salient object detection. While in last three columns,
the colorizations from row 3 are more natural than row 2.
In conclusion, the SCGAN trained with saliency maps from
salient object detection achieves better perceptual quality. The
saliency maps in this paper denote the ones from salient object
detection.

J. Failure Cases

The proposed SCGAN can predict relatively reasonable col-
orizations in many samples; however, there are some common
failure cases, shown in Figure 14. It produces colorization
and saliency map jointly so that core objects in images are
well highlighted. There is less color bleeding effect in most
of generated images. However, there is no specific loss item
or network design for enhancing colors of details or small
objects. Thus, SCGAN is difficult to identify plausible colors
for such objects. Some failure cases are illustrated in Figure 14
first row. As we only use 0.13M training images, the system
cannot include all the situations of input. Some generated
images are not very colorful, as shown in Figure 14 second
row. In the future, we will develop new methods generalized
to small objects while generating more realistic colors.

V. CONCLUSION

In this paper, we presented a hierarchical GAN archi-
tecture called SCGAN. It generates perceptually reasonable
and photorealistic colorful images and their corresponding
saliency maps from grayscale input images automatically.
This is achieved through a pre-trained VGG-16-Gray global
feature network embedded to mainstream so that low-level
and high-level semantic information are combined. In addition,
we proposed a novel saliency map-based guidance method to
perform the joint colorization and saliency map prediction.
These designs help the system minimize semantic confusion
and color bleeding in the colorized images. The proposed
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Grayscale

Ground
Truth

SCGAN

Fig. 14. Examples of the most common failure cases. The top, middle and bottom rows include grayscale ground truth, the generated images, and colorful
ground truth, respectively. The SCGAN may be sensitive to small objects like complicated scene, special patterns, and details respectively as shown in left 3
samples. The images generated by SCGAN may be not very colorful, as illustrated in the samples.

SCGAN framework can be trained with only one-tenth of
ImageNet training data to achieve state-of-the-art colorization
performance. Furthermore, we found that our system has
potential to colorize multispectral images and legacy pho-
tographs with sundry scenes. Finally, we validated our system
on ImageNet dataset against several state-of-the-art methods.
Experiment results demonstrated that SCGAN can generate
high-quality reasonable colorizations.
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