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Abstract—The appearances of children are inherited from their
parents, which makes it feasible to predict them. Predicting
realistic children’s faces may help settle many social problems,
such as age-invariant face recognition, kinship verification, and
missing child identification. It can be regarded as an image-
to-image translation task. Existing approaches usually assume
domain information in the image-to-image translation can be
interpreted by “style”, i.e., the separation of image content and
style. However, such separation is improper for the child face
prediction, because the facial contours between children and
parents are not the same. To address this issue, we propose a new
disentangled learning strategy for children’s face prediction. We
assume that children’s faces are determined by genetic factors
(compact family features, e.g., face contour), external factors
(facial attributes irrelevant to prediction, such as moustaches
and glasses), and variety factors (individual properties for each
child). On this basis, we formulate predictions as a mapping from
parents’ genetic factors to children’s genetic factors, and disen-
tangle them from external and variety factors. In order to obtain
accurate genetic factors and perform the mapping, we propose
a ChildPredictor framework. It transfers human faces to genetic
factors by encoders and back by generators. Then, it learns the
relationship between the genetic factors of parents and children
through a mapping function. To ensure the generated faces
are realistic, we collect a large Family Face Database to train
ChildPredictor and evaluate it on the FF-Database validation set.
Experimental results demonstrate that ChildPredictor is superior
to other well-known image-to-image translation methods in
predicting realistic and diverse child faces. Implementation codes
can be found at https://github.com/zhaoyuzhi/ChildPredictor.

Index Terms—Child Face Prediction, Disentangled Learning,
Generative Adversarial Network, Image-to-image Translation.
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I. INTRODUCTION

THE appearances of children are inherited from parents.
Their internal relations (e.g., kinship verification and

identification) have been well studied [1]–[5]. It provides
the prerequisite for predicting child faces from their parents.
Predicting realistic child faces are beneficial to many social
issues such as law enforcement, criminal investigations, age-
invariant face recognition [6]–[9], kinship verification [1]–[5],
kinship identification [10], and missing children identification
[11], especially under the circumstances that only parent
faces are known. Recently, the generative adversarial network
(GAN) [12] has shown its advance in the face generation
area. If we treat child face prediction as an image- to-image
translation issue, there is a potential for GAN to predict high-
quality child faces. In this paper, we propose a GAN-based
ChildPredictor framework for realistic child face prediction.

The fundamental difficulty of child face prediction lies in
the requirement on both diversity and similarity at the same
time, in addition to image quality. Conditioned on parent faces,
the predicted child faces need to be similar to real faces while
retaining diversity. The existing strategies to address the issues
fall into the two categories:

1) Image-to-image translation (I2I) (Figure 1 (a)): Assum-
ing parents’ and children’s faces form two individual do-
mains, and predicting child faces by transferring “style”
from parent domain to children domain;

2) DNA-Net [13] (Figure 1 (b)): Learning the direct map-
ping between parents’ and children’s features, which
are generated by the same pre-trained encoder. Diverse
prediction is implemented by random selection S.

Unfortunately, these methods have difficulties in predicting
pleasant faces. Firstly, state-of-the-art I2I methods [14]–[16]
proposed a shared content space and individual style spaces
to improve image translation quality. If simply applying it to
child face prediction, though the paired parent-child data is
used for training I2I methods, they easily fall into “appearance
collapse” (e.g., the generated children have the same facial
structures and contours with parents). We assume that the
disentanglement of content (i.e., structure or shape) and style
(i.e., texture) is not reasonable for this task since different
children could have similar structures with parent faces but not
the same. Secondly, DNA-Net fused features of parents and
then changed them using an age regression model [17]. Since
parent and child faces share the same latent space, it restricts
the feature representation and reality. Though it applied a
random selection S to combine mothers’ and fathers’ features,
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Fig. 1. Assumption and data flow: (a) I2I methods [14]–[16]; (b) DNA-Net [13]; (c), (d) ChildPredictor. The X and Y represent parent and children domain,
respectively. The C, S, E , V , G are content, style, external, variety (or attribute for (b)) and genetic latent domains, respectively. The network E and G are
pair of encoder and generator that connect image space and latent space. The network T is a mapping function used in the latent space.

the framework is trained in a unimodal fashion. Therefore, the
results are not diverse enough.

This paper presents a novel framework for synthesizing real-
istic and diverse child faces. Built upon previous experiences,
we first assume a human face is determined by a genetic factor,
external factor, and variety factor, among which a child’s
genetic factor is predicted from parents’ genetic factors. These
three factors are trained to be orthogonal, as shown in Figure
1 (d), and detailed definitions are concluded as:

1) Genetic factor g: Family characteristics such as contour,
eye shape, pupil color, skin color, etc., which model the
inter-identity variation between different identities;

2) External factor e: Categorical and gene-irrelevant at-
tributes, e.g., moustaches, ages, expressions, glasses;

3) Variety factor v: Individual diversities for an identity. It
is not correlated to genetic and external factors, which
models acquired factors (intra-identity variations).

Based on the assumption, we propose a GAN-based frame-
work called ChildPredictor to predict child faces from their
parents. The data flow of ChildPredictor is shown in Figure
1 (c). There are two sequential steps in the training phase
compared with previous one-step pipelines:

1) Domain-specific disentangled learning: Learning dis-
entangled representations of different factors for both
domains, i.e., the disentanglement of GX /EX and
GY /EY /VY (please see the caption of Figure 1 and the
training phase of Figure 1 (c) for their definitions),
respectively;

2) Inter-domain multimodal mapping: Predicting multiple
children’s genetic factors between the disentangled ge-
netic factors in both spaces GX and GY .

There are four advances of our setting: 1) Compared with
the general content-style separation [15], the proposed genetic-
external-variety disentangled learning, which is a three-way
decomposition specially designed for the task, considers inter-
identity variation, gene-irrelevant attributes, and intra-identity
variation; 2) Since the data distribution of parents’ and chil-
dren’s faces are quite different, training in each domain can
lead to better domain-specific features than joint training [13];
3) Since domain-specific training is not based on limited
parent-child pairs, additional data can be used, e.g., FFHQ

child faces [18] are used to improve the generation quality of
GY ; 4) Our mapping function learns a multimodal prediction
instead of unimodal [13] thus it is able to simulate different
child identities from the same parent. In summary, our Child-
Predictor framework largely improves child face prediction
quality in similarity, diversity, and realness.

In addition, to train ChildPredictor, we newly collect a
large-scale FF-Database from the Internet. It includes 7488
parent faces and 8558 child faces with 128×128 resolution
and even gender distribution. Each face is aligned to be almost
frontal and labeled with 6 attributes which are gender, age,
expression, glasses, moustache, and skin color. For evaluation,
we notice that common metrics (e.g., PSNR) fail to measure
face similarity since the generated and ground truth faces are
not pixel-wisely aligned. We use a cosine similarity metric to
compute feature distances from a pre-trained face recognition
model and conduct a human perceptual study for subjective
evaluation. The experiment results on the FF-Database valida-
tion set demonstrate that ChildPredictor performs better than
previous pipelines [13]–[16], [19]–[21] on cosine similarity,
FID [22], LPIPS [23] scores and human preference rates.

The main contributions of this paper are as follows:
1) We propose a GAN-based ChildPredictor framework

specializing in the task of child face prediction;
2) We propose a latent representation disentangled learning

method by sampling from three latent factors;
3) We newly collect a large-scale Family Face Database

(FF-Database). To our best knowledge, it is the first
dataset for child face prediction with labeled attributes;

4) We propose a cosine similarity metric and a human
perceptual study for evaluating paired predicted and real
faces. The ChildPredictor achieves the best performance.

II. RELATED WORK

Generative Adversarial Network (GAN) and Inversion.
The GAN [12] has accomplished great improvements in image
generation. It consists of a generator and a discriminator,
where the generator produces realistic samples and the dis-
criminator distinguishes input samples are from ground truth
or generated. However, GAN is hard to converge and unstable.
To address the issue, some methods minimized mode collapse
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[24] and loss fluctuation [25], or proposed new architectures
[18], [26]–[28]. To discover the relation between generated
images and latent space, GAN inversion techniques have been
widely studied. For instance, [29] and [30] learned to search
interpretable directions in GAN’s latent space. To edit images
accurately, inverse encoders [31]–[37] were proposed to sim-
ulate reverse process of GANs. They learned the inversion in
original latent space or extend W+ space.

Face Attribute Transfer. The previous face attribute trans-
fer methods are normally based on paired data [38]. However,
it is hard to collect many different attributes for the same
person. To avoid that, researchers used several representations
such as pre-defined attributes [39]–[43], facial landmarks [44],
face mask [45], and action unit [46]. These methods were
further enhanced by processing multiple attributes simultane-
ously [47]–[49]. More recently, the GAN inversion techniques
[50], [51] and latent disentangled learning [52]–[54] have been
used in the face attribute transfer area. For instance, Nitzan et
al. [50] transferred attributes based on an exemplar face by
manipulating pre-trained GAN’s latent space.

Image-to-Image Translation (I2I) and Disentangled
Learning. The I2I denotes the mappings of images from
one domain to other domains. For instance, Pix2Pix [55]
used a conditional GAN to perform domain transfer on pixel-
aligned data, which is necessary, otherwise, the results are
blurry. To extend I2I to unaligned data, some approaches have
been developed, e.g., enlarging the distance between generated
samples and source [56], [57] and cycle consistency [19], [20],
[58]. However, the models often fail (i.e., mode collapse) when
there exist extreme transformations or training data is limited.

To improve the image translation quality, the disentangled
learning [14]–[16], [21], [59]–[67] assumed that images from
individual domains share the same latent content space but
separate style space. By changing “style code”, the network
transfers input images to other domains while maintaining
the content information. To further address the mode collapse
issue, [24] proposed a mode-seeking loss to enlarge distances
of different generated samples for regularization. However,
such disentangled learning methods are not appropriate for
child face prediction since the goal is not only to transfer
the style but also to consider facial attributes and intra-
identity variations. To address the issue, we propose a new
disentangled learning method based on genetic, external, and
variety factors (please see Figure 1 (c) and (d) for their
definitions).

III. DATA COLLECTION OF FF-DATABASE

We collect a large-scale Family Face Database (FF-
Database), consisting of 16046 images with 128×128 res-
olution. Built upon it, we learn the child prediction in a
data-driven manner. There are 4 steps to collect a group of
images in FF-Database, as shown in Figure 2: 1) Downloading
family images by country or district names in 6 continents
from the Internet, and filtering out unrelated face images;
2) Extracting faces by dlib1 and aligning them to be almost
frontal; 3) Enhancing faces by denoising [68], inpainting [69],

1http://dlib.net/

Asia family
China family
Japan family

· · · · · ·
USA family

Keyword table
(continent / country)

Internet

(1) Download family 
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out unrelated images 
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Fig. 2. Illustration of image collection workflow for the FF-Database.

TABLE I
CONCLUSION OF THE LABELED FACIAL ATTRIBUTES OF THE

FF-DATABASE TRAINING AND VALIDATION SETS.

Tag Attribute Parent faces Child faces
True False Total True False Total

Train Male 3574 3574 7148 4104 4086 8190
Train Young 804 6344 7148 1043 7147 8190
Train Smile 6384 764 7148 5860 2330 8190
Train Glass 572 6576 7148 279 7911 8190
Train Moustache 1281 5867 7148 54 8136 8190
Val Male 170 170 340 192 176 368
Val Young 8 332 340 35 333 368
Val Smile 334 6 340 352 16 368
Val Glass 12 328 340 6 362 368
Val Moustache 53 287 340 0 368 368

super-resolution [70] algorithms, and resizing to 128×128
resolution. Note that the very low-quality images are discarded
by human effort; 4) Labeling them with 6 attributes including
gender, age, expression, glasses, moustache, and skin color.

We divide the whole dataset into two parts, where the
training set includes 15538 faces and the validation set in-
cludes 708 faces. Specifically, there are 7148 parents and
8190 children in the training set; and there are 340 and 368
faces in the validation set, respectively. The attributes and the
division of training and validation sets are concluded in Table
I, respectively.

IV. METHODOLOGY

A. Problem Formulation

Given paired parent faces xf , xm ∈ X and a child face y ∈
Y , the target of child face prediction is to learn p(y|xf , xm).
Note that their corresponding genetic factors gy, gfx , g

m
x are the

compact and simplified representations of face images by our
definition. Therefore, it is more tractable to solve the problem
in the genetic domain, i.e., to learn p(gy|gfx , gmx ), only if the
genetic factors and faces are transferable from each other. To
achieve this, we design the two-stage framework, domain-
specific disentangled learning which learns to extract the
genetic factors from faces and restore them to faces for
parent and children domain separately, and inter-domain
multimodel mapping which maps parent genetic factors to
children domain.
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Fig. 3. Illustration of (a) self-supervised disentangled learning (1st training step); (b) inter-domain multimodal mapping (2nd training step); (c) inference
pipeline. The latent codes g∗, e∗, vY represent genetic, external and variety factors.

TABLE II
LIST OF ALL THE NOTATIONS USED IN THE PAPER.

Notation Definition
DX Discriminator for parent domain X
DGX Discriminator for parent genetic factor distribution GX
DY Discriminator for children domain Y
efx External factor of father face image xf
emx External factor of mother face image xm

EX Distribution of parent external factor efx and emx
ey External factor of child face image y
EY Distribution of child external factor ey
EX Encoder from X → GX of ChildPredictor
EY Encoder from Y → GY of ChildPredictor
gfx Genetic factor of father face image xf
gmx Genetic factor of mother face image xm

GX Distribution of parent genetic factor gfx and gmx
gy Genetic factor of child face image y
GY Distribution of child genetic factor gy
GX Generator from GX → X of ChildPredictor
GY Generator from GY → Y of ChildPredictor
L∗ Loss functions for training the ChildPredictor
λ∗ Trade-off parameters for different loss functions
T Mapping function from GX → GY of ChildPredictor
vy Variety factor of child face image y
VY Distribution of child variety factor gy
xf Father face image
xm Mother face image
x̂e Generated parent face image according to ex
X Parent domain (the set of parent face images)
y Child face image
ŷe,v Generated child face image according to ey and vy
Y Children domain (the set of child face images)

Our framework is different from existing methods, as shown
in Figure 1. Firstly, the I2I methods assume a shared content
space for parent and children domains and easily falls into
appearance collapse. However, the child face prediction is
not simply transferring styles of the faces. Secondly, DNA-
Net assumes a shared latent space for parent and child faces
and then performs age-regression. However, this design cannot
ensure the generator recovers realistic child faces. As for the
ChildPredictor, we assume parent and child genetic factors are
in the individual latent spaces and propose a mapping function
T to learn the prediction from parents’ genetic factors to child
genetic factors.

During inference, our ChildPredictor firstly extracts genetic
factors from the parent faces, then maps them to children
genetic domain, finally predicts diverse outputs by sampling

different genetic, external, and variety factors. The workflow
is shown in Figure 3 (c) and all the notations are concluded in
Table II. Details on the training process are presented below.

B. Domain-specific Disentangled Learning

1) Assumption: We perform the domain-specific disentan-
gled learning in the parent and children domain separately.
To ensure the transferability between face images and genetic
factors for both domains, the two encoder-generator pairs (EX ,
GX ), (EY , GY ) must satisfying:

xf = GX (EX (x
f ), efx), EX (x

f ) = gfx , (1)

xm = GX (EX (x
m), emx ), EX (x

m) = gmx , (2)

y = GY(EY(y), ey, vy), EY(y) = gy, (3)

where e∗ and v∗ denote external and variety factors, respec-
tively. The goal is to ensure that encoders should only extract
genetic factors. To further differentiate their roles, we assume
genetic factors follow normal distribution and variety factors
follow uniform distribution. External factors are categorical
attributes thus binary distributed.

2) Parent Domain X : We adopt [71] as EX and GX , as
shown in Figure 3 (a). The encoder EX firstly encodes a parent
image x to a genetic factor ĝx. Then, the generator GX re-
ceives the produced genetic factor with a given external factor
ex to recover a face image x̂e. It is an identity transformation
only when the given ex is from x; otherwise, GX performs
attribute transfer while maintaining identity unchanged. It is
because genetic factors are disentangled from external factors.
The whole loss LX for training EX and GX is given as:

LX = λ1XL
1
X + λ2XL

C
X + λ3XL

G
X + λ4GXL

G
GX , (4)

where λ1X , λ2X , λ3X and λ4GX are trade-off parameters. The L1
reconstruction loss L1

X maintains attribute-invariant features
determined by genetic factors. The classification loss LC

X
enlarges the differences between faces with and without at-
tributes determined by different dimensions of external factors,
which share similar definitions with [48]. The image-level
adversarial loss LG

X /LD
X [25] enhances perceptual similarity.

To further disentangle genetic and external factors in the latent
space, we use a genetic-factor-level adversarial loss LG

GX /LD
GX



IEEE TRANSACTIONS ON MULTIMEDIA 6

to make GX approach to standard normal distribution. The
detailed formulations are:

L1
X = E[||x− x̂e||1], (5)

LC
X = −exlog(DC

X (x)) + (1− ex)log(1−DC
X (x))

− exlog(DC
X (x̂e)) + (1− ex)log(1−DC

X (x̂e)),
(6)

LG
X = −E[DG

X (x̂e)],

LD
X = E[DG

X (x̂e)]− E[DG
X (x)],

(7)

LG
GX = −E[DGX (ĝx)],

LD
GX = E[DGX (ĝx)]− E[DGX (u)],

(8)

where two discriminators are used to compute these losses.
Image-level discriminator DX has two branches, one of which
outputs a binary vector for computing LC

X and the other
of which outputs a scalar for computing LG

X . Factor-level
discriminator DGX receives genetic factors. In Equation 8,
u is a random sample from a standard Gaussian distribution
N(0, 1) with the same dimension of genetic factors ĝx. Note
that the variety factor is not considered in the parent domain
as there is only one parent pair for any child, while there is
more than one child for each parent pair.

3) Children Domain Y: We adopt PGGAN as GY to
achieve a higher-quality generation. It generates images based
on the given genetic factors, external factors, and variety
factors, as shown in Figure 3 (a). To perform disentangled
learning, we use a GAN-inverse encoder EY to recover only
genetic factors from images generated by a pre-trained GY .

To pre-train GY , we define the loss LGY as:

LGY = λ1YL
G
Y + λ2YL

C
Y + λ3YL

M
Y , (9)

where LG
Y is an adversarial loss [12], which promotes GY

generating realistic faces. LC
Y is the auxiliary classification

loss [72], which ensures external factors can control the
facial attributes. LM

Y is the mode-seeking loss [24] which
ensures variety factors are related to individual variations.
Their detailed definitions are as follows:

LG
Y = −E[DG

Y (ŷe,v)],

LD
Y = E[DG

Y (ŷe,v)]− E[DG
Y (y)],

(10)

LC
X = −eylog(DC

Y (y)) + (1− ey)log(1−DC
Y (y))

− eylog(DC
Y (ŷe,v)) + (1− ey)log(1−DC

Y (ŷe,v)),
(11)

LM
Y = max

GY
(
dY(ŷe,v2 − ŷe,v1)

dVY (v
2
y − v1y)

), (12)

where ŷe,v is the randomly generated result based on an
external factor ey and a variety factor vy . y is a real sample
selected from all training child images. DG

Y and DC
Y are two

branches of the discriminator DY . When computing LM
Y , there

are two individual outputs ŷe,v1 and ŷe,v2 generated from the
same external factor ey but individual variety factors v1y and
v2y . We adopt the l1-norm as distance metric d∗(·), which
includes 3 sequential operations: subtraction, taking absolute
value, and computing average.

Then, we train EY to disentangle the genetic factor from
the other two factors in the latent space of GY . Suppose that

a fixed genetic factor is used to generate faces with different
external and variety factors, an ideal encoder can restore the
same genetic factor (i.e., same identity) from those faces.
Based on the assumption, we train the EY by loss LEY :

LEY = E[||gy − EY(GY(gy, ey, vy))||1], (13)

where the GY is fixed. The ey and vy are randomly sampled
for a same gy . After its convergence, we can obtain the
disentangled genetic factors for arbitrary child faces by EY .

C. Inter-domain Multimodal Mapping

Different from previous I2I methods, we perform the “mul-
timodal mapping” from parent domain to children domain only
on genetic factors in the latent space. The reason is after the
disentangled learning for domain X and Y , the genetic factors
g∗ are disentangled from other factors e∗ and v∗, and by our
definition only the genetic factors among the three are related
between the two domains.

To learn GX → GY , we firstly obtain parent-child genetic
factor pairs (gfx /gmx , gy) for each family by encoding faces
through EX and EY . Then, we use a neural network as
mapping function T , as shown in Figure 3 (b). To simulate
multiple children, we simply let T predict k different genetic
factors by k branches, i.e., T : ĝ1y, ĝ

2
y, ..., ĝ

k
y = T (gfx , g

m
x ). We

set k = 4 in our experiments. The training for T is supervised
by parent-child genetic factor pairs and the following loss LT :

LT = E[||ĝ1y − g1y||1] + λ1TE[||ĝ2y − g2y||1]

+ λ2TE[||ĝ3y − g3y||1] + λ3TE[||ĝ4y − g4y||1],
(14)

where ĝjy and gjy are the j-th predicted and real genetic factor,
respectively. Note that different loss coefficients (1, λ1T , λ2T ,
and λ3T ) are used for the 4 predictions in order to fulfill the
multimodal prediction. For families with 4 children or more,
we select the first 4 children as ground truth g1y , g2y , g3y , and g4y .
For families with less than 4 children, we replace the blank
position gjy with g1y . For instance, for families with only 3
children, we use the 1-st child as ground truth for the 4-th
branch. Note that, different loss coefficients are applied to 1-
st and 4-th branches though their ground truth images are the
same; while the ground truth images of 2-nd and 3-rd branches
are different from 1-st and 4-th branches. Therefore, different
optimizations are achieved for all 4 branches.

D. Network Architecture

1) Parent Domain X : The parent domain networks consist
of encoder-decoder pair EX , GX and two discriminators
DX /DGX . EX has 5 generator convolutional blocks (includ-
ing a convolutional layer, a BatchNorm [73] layer, and a
LeakyReLU [74] activation function) to produce genetic fac-
tors gx. GX adopts 5 generator convolutional blocks to pro-
gressively upsample the combinations of genetic and external
factors. The feature maps of the encoder are injected into the
generator as U-Net [71]. DX has 5 discriminator convolu-
tional blocks (including a transposed convolutional layer, a
InstanceNorm [75] layer, and a ReLU [76] activation function),
followed by 2 parallel MLP layers. The outputs are used for
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TABLE III
THE DETAILS FOR THE TRAINING STEPS. THE “NETWORK”, “LR”, “EPOCH” AND “LOSS” REPRESENT NETWORKS TRAINED IN THIS STEP, CURRENT
LEARNING RATE, TOTAL EPOCHS AND LOSSES USED IN THE STEP, RESPECTIVELY. THE “ALL” DENOTES ALL NETWORKS OR ALL LOSSES ARE USED.

Step Network LR Epoch Loss Dataset
1 EX , GX 2× 10−4 200 L1

X , LC
X , LG

X FF-Database parent images
1 GY 1.5× 10−3 200 LY (LG

Y , LC
Y , LM

Y ) FF-Database and FFHQ child images
2 EX , GX 2× 10−4 200 LX (L1

X , LC
X , LG

X , LG
ZX

) FF-Database parent images
2 EY 1× 10−4 200 LEY no data needed (EY is trained by sampling from latent codes)
3 T 1× 10−3 200 LT FF-Database parents-children image pairs
4 All 1× 10−5 10 All FF-Database parents-children image pairs

computing WGAN adversarial loss LG
X and classification loss

LG
X , respectively. DGX contains 2 discriminator convolutional

blocks followed by a MLP layer. The output is adopted to
compute the genetic factor adversarial loss LGX .

2) Children Domain Y: We modify the official PGGAN
[27] as GY , which receives genetic, external, and variety
factors as inputs. The factors are concatenated along the
channel dimension. The output resolution is 128×128. We use
PixelNorm [27] and PReLU [77] as the normalization layer
and activation function, respectively. EY inverses an image
generated by GY back to the genetic factor. It is composed of
a VGG-network [78] and a MLP layer, where the MLP layer
projects the features from VGG-network into 480-dimensional
output, which is consistent to the dimension of genetic factor.

3) Mapping Function T : The mapping network T receives
the genetic factors of mother and father as the inputs. It
consists of a head module, a body module, and a tail module.
The head module is a simple combination of two convolutional
layers and a LeakyReLU activation function. The body module
contains 5 residual layers [79] with LeakyReLU activation
function. The tail module includes 4 MLP layers which
predicts 4 genetic factors (ĝ1y , ĝ2y , ĝ3y , and ĝ4y). In addition,
we apply a normalization operation (minus mean and divide
variance for each output genetic factor) to the output genetic
factors to push them to standard Guassian distribution.

V. EXPERIMENT

A. Training Details

General Training Details. The training process of Child-
Predictor can be concluded in 4 steps, as shown in Table III.
Specifically, for step 1, the training of EX , GX , and GY are
parallel. However, the training of step 2 is based on the results
of step 1, and so as step 3 and 4. The batch size is set to
16 for each step. We initialize the network parameters using
the Xavier initialization [80]. We use Adam optimizer [81]
with β1=0.5 and β2=0.999. The discriminators share the same
learning rates as corresponding generators. There is no weight
decay used in the training procedure, but the learning rates for
individual steps are different, as listed in Table III. There is
no regularization terms used for the training.

Dataset. We adopt the training set of FF-Database (7148
parent and 8190 child faces) and 5000 high-quality child faces
from FFHQ dataset [18]. The FFHQ child faces are post-
processed based on the same pipeline as FF-Database, e.g.,
1) We use dlib to extract and align faces; 2) We label them
with the same attributes as in FF-Database. All parent and
child faces (including FF-Database and FFHQ) are used in
the domain-specific training of domain X and Y , respectively.

TABLE IV
THE TRAINING DETAILS OF THE BASELINE CYCLEGAN. “Gp→c” AND
“Gc→p” REPRESENT THE GENERATORS FROM THE PARENT DOMAIN TO
THE CHILDREN DOMAIN AND ITS REVERSE, RESPECTIVELY. “Dp” AND

“Dc” ARE THE DISCRIMINATORS FOR PARENT AND CHILDREN DOMAINS,
RESPECTIVELY. “INPUT NC” AND “OUTPUT NC” ARE INPUT AND OUTPUT

IMAGES WITH N CHANNELS, RESPECTIVELY.

Item Original CycleGAN Baseline CycleGAN
Gp→c input 3c, output 3c input 6c, output 3c
Gc→p input 3c, output 3c input 3c, output 6c
Dp input 3c input 6c
Dc input 3c input 3c
Training data random parent-child data paired parents-child data
Parameters the same as [19] the same as [19]

The motivation to use FFHQ child faces is to enhance the
generation quality of GY .

The attributes used in the training for parent domain X
are gender, moustache, glasses and expression, while they are
age, gender, glasses and expression for children domain Y . To
simplify the computation of the classification losses, we define
age and expression as binary attributes (i.e., young or senior
and laugh or not laugh, respectively).

Loss Function. The loss functions used in each step are
concluded in Table III. The coefficients of different loss terms
are shared for different steps, i.e., λ1X , λ2X , λ3X , λ4ZX

, λ1Y , λ2Y ,
λ3Y , λ1T , λ2T , and λ3T are empirically set to 100, 10, 1, 0.1, 1,
1, 5, 0.8, 0.6, and 0.4, respectively.

Time. The ChildPredictor is trained on 8 NVIDIA Titan
Xp GPUs (12 Gb memories for each). It is implemented by
PyTorch 1.1.0 framework and Python 3.6. The training time of
PGGAN GY is approximately 5 days. Considering the parallel
training procedure (see Table III), the remaining training time
takes approximately 7 days.

B. Experiment Settings

1) Baselines: To give a comprehensive and fair comparison,
we do experiment on both domain transferring methods and
state-of-the-art child face prediction DNA-Net. They are,

1) I2I: DualGAN [20], CycleGAN [19], UNIT [21], DRIT
[14], MUNIT [15], and DRIT++ [16], where DRIT,
MUNIT, and DRIT++ predict multimodal by changing
latent style codes;

2) DNA-Net [13]: It predicts multimodal by changing the
linear factor in the random selection S.

Since input and output are paired, we adjust the training
scheme of all baselines by feeding parent-child pairs instead
of randomly choosing samples from the whole training dataset
for fairness. An example of I2I method is given in Table IV.
Since DNA-Net is not open-source, we train it with the same
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attributes as ChildPredictor, where fathers and mothers are
separately encoded, as shown in Figure 1 (b). In addition, to
avoid ChildPredictor (using glasses, emotion, age and gender)
and DNA-Net (using age and gender) using different face
attributes in comparison, we fix the child external factors equal
to ground truth for fairness.

2) Evaluation: We perform experiments on 170 validation
parent-child pairs of the FF-Database. They are of the same
image resolution as training data. Normally, the generated and
ground truth faces are not strictly unaligned. To evaluate the
generation quality, it is more reasonable to compare feature-
level face similarity. To evaluate the generation diversity,
we evaluate how large the differences are among different
generated child faces from the same parent. For every family
and every multimodal method, we predict 40 different child
faces, which forms 40 groups of results. The experiments of
subsections C-H are performed on FF-Database validation set.

Cosine distance (Cos. Dis.). It measures feature-level
cosine similarity between two faces. We use features from
the second-last fully-connected layer of a Sphere20 network
[82], [83] pre-trained on CelebA dataset [84]. We compute
pairwise cosine similarity for every family in every group and
then compute the average of 40 groups. In order to demonstrate
the effectiveness of cosine similarity, we randomly shuffle the
170 real parent-child pairs to obtain 6800 random parent-child
pairs. Then, we compute the average of all the cosine similarity
values. The average is 0.3204.

Fréchet Inception Distance (FID) [22]. It measures the
distance between two sets of images, i.e., the generated child
faces and training data. The training data denotes child faces
in the FF-Database training set. We use the features from the
default “pool3” layer of the Inception-V3 [85] pre-trained on
ImageNet [86]. We compute the FID for every group and then
compute the average of 40 groups.

Learned Perceptual Image Patch Similarity (LPIPS)
[23]. It measures the diversity of the generated child faces.
It is represented by the L1 distance between the features
extracted from the AlexNet [87] pre-trained on ImageNet [86].
We compute the average of the pairwise distances among 40
groups of outputs for every family (i.e., 780 pairs if 40 outputs,
C2

40 = 780). Then, we compute the average across all 170
families. Note that, the color change is unwanted in child
face prediction, although it facilitates the output diversity. For
accurate evaluation, we conduct histogram equalization on all
the generated images of all algorithms in comparisons. The
histogram equalization operation removes the effect of color
shift obviously. Thus, the evaluation is more fair in terms of
the baselines (i.e., the style transfer methods often change the
skin color, which is not real for this task).

Human Perceptual Study. We perform a human perceptual
study to subjectively evaluate different methods. If a method
obtains higher preference rates, it shows the method can pro-
duce higher-quality and more diverse faces. There are overall
14 human observers. The generated faces, input parents, and
real child faces are presented to observers. The observers need
to select one method that predicts faces closest to ground truth
for each family. Finally, we count the preference rates.

TABLE V
QUANTITATIVE ANALYSIS OF BASELINES AND OUR CHILDPREDICTOR ON

COSINE DISTANCE, FID, AND LPIPS METRICS. THE BEST
PERFORMANCES ARE HIGHLIGHTED WITH THE RED COLOR.

Method Cos. Dis. ↑ FID ↓ LPIPS ↑
DualGAN 0.3733 82.01 /
CycleGAN 0.3805 71.23 /
UNIT 0.3727 71.78 /
DRIT 0.3843 62.93 0.0041
MUNIT 0.3702 63.61 0.1669
DRIT++ 0.2013 79.92 0.0056
DNA-Net 0.3137 88.23 0.0087
ChildPredictor (normal) 0.4245 60.73 0.0063
ChildPredictor (full) 0.4303 38.15 0.2757

TABLE VI
SUBJECTIVE HUMAN PERCEPTUAL STUDY RESULTS OF BASELINES AND

CHILDPREDICTOR ON PREFERENCE RATES (PRS).

Method Similarity PR Diversity PR
DualGAN 0.84% /
CycleGAN 1.01% /
UNIT 4.08% /
DRIT 7.61% 5.04%
MUNIT 6.09% 9.83%
DRIT++ 1.21% 1.14%
DNA-Net 5.13% 1.05%
ChildPredictor (full) 74.03% 82.94%

C. Experiment on Child Face Prediction Reality

1) Qualitative Analysis: We illustrate some generated sam-
ples by different methods in Figure 4. There are 4 samples for
each multimodal method in the figure, where we sample differ-
ent style codes for baselines to generate multiple faces, while
we change genetic factors or variety factors for ChildPredictor.

Firstly, results from I2I methods (yellow background) are
very similar to mothers. We claim it is an “appearance col-
lapse” issue caused by the shared content space assumption. It
promotes the networks simply copying the face structures from
mothers; thereby the results are not similar enough compared
with real children. Though we feed parent-child pairs to train
baselines (see Figure IV), the disentanglement of content and
style is not appropriate for this task. Secondly, DNA-Net
assumes parents and children share the same content space
like I2I methods but additionally uses a mapper to learn the
relation between parent content codes and child content codes.
After that, it performs an age-regression to the mapped child
content codes to obtain a face. It is not like a natural biological
process thus leading to artifacts in the generated faces.

ChildPredictor predicts very similar results with real chil-
dren (e.g., face structure, color, and facial features). Also,
the generated faces have less artifacts than baselines. We
claim it is because the proposed disentangled learning is
more accurate than the separation of content and style. Since
external and variety factors are disentangled from genetic
factors, the learning between parent and children domains of
ChildPredictor is only on genetic factors. Compared with style
codes, genetic factors are a special design for this task.

2) Quantitative Analysis: The quantitative results are con-
cluded in Table V. Since the I2I baselines do not adopt
face attributes and FFHQ child data, we exclude them at
the training stage for fairness, i.e., “ChildPredictor (normal)”.
Firstly, “ChildPredictor (normal)” obtains better cosine simi-
larity and FID than the baselines. It demonstrates the archi-
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DualGAN CycleGAN UNIT MUNITDRIT DRIT++Parents DNA-Net ChildPredictor Real Child

Fig. 4. Illustration of some generated samples by ChildPredictor and baselines. The 1st column is input parents and the last column is real children. The
2nd-4th columns include parent-child pairs and single predicted children by different methods, respectively. The 5th-9th columns include diverse children
generated by representative I2I methods (yellow background), DNA-Net (green background), and ChildPredictor (red background), respectively.

tecture predicts the closest samples with ground truth with
the best perceptual quality. Secondly, the full ChildPredictor
enhances the results of “ChildPredictor (normal)”. It is because
of the use of attributes for the disentangled learning, which
denotes the prediction-irrelevant information is disentangled
from genetic factors. In addition, ChildPredictor obtains the
highest LPIPS. It demonstrates that the design of predicting
4 genetic factors by T and variety factors are helpful for
producing diverse faces.

3) Human Perceptual Study: The preference rates (PRs)
for each method in terms of both similarity and diversity
are concluded in Table VI. The ChildPredictor obtains clearly
higher PRs than baselines, which demonstrates that it predicts
perceptually more realistic and diverse faces, respectively.

D. Ablation Study
We conduct 9 experiments to evaluate several key compo-

nents of ChildPredictor. The comparison results are included
in the Table VII and Figure 5. The analysis is as follows:

1) Disentangled Learning Ability: We exclude the clas-
sification losses LC

X or LC
Y or both to train ChildPredictor

without external factors. Also, we optimize EY in image space
rather than on genetic factors (i.e., LEY performs on images),
leading to false disentangled learning in children domain. All
the settings lead to obvious decreases of metrics (e.g., more
than 0.06 decrease of Cos. Dis for “w/o LC

Y ”). The outputs
are not realistic, even contain visual artifacts, e.g., the faces,
eyes and mouths marked by green rectangles of Figure 5 1).

2) Generation Diversity: We exclude the mode-seeking loss
LM
Y or let mapping function T produce one genetic factor
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Parents 1) w/o 𝐿𝒳" 1) w/o 𝐿𝒴"
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image space
2) w/o 𝐿𝒴%

2) w/o 𝐿𝒴%

and 𝐿𝒴"
2) 𝑇 outputs 
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3) w/o 𝐿𝒢𝒳
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ChildPredictor
(full)

Real 
Child

Parents 1) w/o 𝐿𝒳" 1) w/o 𝐿𝒴"
1) w/o 𝐿𝒳"

and 𝐿𝒴"
1) 𝐿$𝒴 in 

image space
2) w/o 𝐿𝒴%

2) w/o 𝐿𝒴%

and 𝐿𝒴"
2) 𝑇 outputs 

one gene
3) w/o 𝐿𝒢𝒳

' 3) w/o 
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ChildPredictor
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Real 
Child

Fig. 5. Illustration of the generated images under 9 different ablation study settings. There are 2 output images for each setting by only changing the variety
factor. The left column is input parents (gray background), the middle part includes results of different settings (yellow background), the right parts are full
ChildPredictor’s results and real child faces (red and blue background, respectively).

Father Mother 1) w/o 𝐿𝒳" 1) w/o 𝐿𝒴" 1) w/o 𝐿𝒳" and 𝐿𝒴" 1) 𝐿$𝒴 in image space Real ChildChildPredictor (full)

Fig. 6. Illustration of more results on ChildPredictor with and without disentangled learning (i.e., ablation study setting 1)). The left two columns are inputs
for the ChildPredictor. The 68 face landmarks (extracted by dlib) are illustrated alongside the generated child faces and real child faces.

TABLE VII
COMPARISON OF DIFFERENT ABLATION STUDY SETTINGS OF THE

PROPOSED CHILDPREDICTOR.
Ablation study setting Cos Dis. ↑ FID ↓ LPIPS ↑
1) w/o LC

X 0.4167 43.76 0.2875
1) w/o LC

Y 0.3665 39.71 0.2161
1) w/o LC

X and LC
Y 0.3572 39.89 0.2306

1) LEY in image space 0.3592 39.39 0.3511
2) w/o LM

Y 0.4247 54.51 0.2213
2) w/o LM

Y and LC
Y 0.4168 64.14 0.2213

2) T outputs one gene 0.4161 52.57 0.0653
3) w/o LG

GX 0.4303 45.94 0.2236
3) w/o FFHQ data 0.4296 69.11 0.1482
ChildPredictor (full) 0.4303 38.15 0.2757

instead of 4 factors. The LPIPS metric of these settings
decreases obviously due to no effect of variety factors or
no diverse output genetic factors. Therefore, those different
generated faces are almost the same, as shown in Figure 5 2).

3) Other Terms: We exclude the auxiliary loss LG
GX or

additional FFHQ data when training GY . All the metrics
decrease since LG

GX and FFHQ data contribute to high-quality
image generation. The predicted faces are blurry or ghosted
if excluding them, as the specific regions marked by green
rectangles of Figure 5 3).

In conclusion, all the network components, loss functions,
and disentangled learning method are significant for ChildPre-
dictor to generate realistic and diverse child faces.

E. Experiment on Disentangled Learning
To further demonstrate the effectiveness of disentangled

learning, we show more predicted faces with and without
disentangled learning (w/o LC

X , w/o LC
Y , w/o LC

X and LC
Y ,

and LEY in image space; please see ablation study setting 1)).
The results are illustrated in Figure 6, where 68 landmarks are
illustrated for every face. The results from full ChildPredictor
are more similar to real children.
F. Disentangled Learning and Robustness Analysis

The disentangled learning is the basic of ChildPredictor
since it assists to extract accurate genetic factors. For parent
domain, we walk the latent code of gx or ex and fix the other,
as shown in Figure 7. Obviously, changing genetic factors gx
will not influence attributes, and modifying attributes ex will
not change identity. Therefore, the parent genetic factors can
well represent prediction-relevant information. For children
domain, we illustrate generated faces from one input parent,
e.g., from different genetic factors ĝjy predicted by mapping
function or different external factors ejy and variety factors
vjy , as shown in Figure 8 (a). The ejy only changes specific
attributes, while the vjy only influences individual properties
when other factors are fixed. We also show generated faces by
changing one of input parents, as shown in Figure 8 (b). The
model is robust to different inputs, which proves that it does
not fall into the appearance collapse.
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Fig. 7. Disentangled learning in parent domain X . The left is input and the right is the generated face. The texts around arrows denote changed attributes.

(a) Disentangled learning in domain 𝒴. The top row includes the real family faces
and output. There are 6 groups of faces shown, where the genetic and external
factors remain unchanged in each group, while variety factors change. The arrow
denotes the change of external factor between each 2 groups.

gender

Generated from {𝑔!"", 𝑒! # , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}
emotion

Generated from {𝑔!"", 𝑒! % , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}
emotion age gender

age

Generated from {𝑔!$", 𝑒! $ , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}

gender

Input
Parents

Real
Child

Generated Baseline 
Child Faces

Generated from {𝑔!"", 𝑒! " , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}

(b) Robustness analysis in domain 𝒴. The upper 3 groups of images show the
ChildPredictor can generate diverse and high-quality child faces when fixing
father image and changing mother images. The lower 3 groups of images show
the resultswhen fixingmother image and changing father images.

Generated from {𝑔!"", 𝑒! $ , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}

Generated from {𝑔!$", 𝑒! " , (𝑣!", 𝑣!$, 𝑣!#, 𝑣!%, 𝑣!&)}

Fixing father and changing mother images

Fixing mother and changing father images

Parents Generated Faces Generated FacesGenerated FacesParents Parents

Parents Generated Faces Generated FacesGenerated FacesParents Parents

Fig. 8. Illustration of (a) Disentangled learning in children domain Y: generated faces of the same parents from different genetic, external, and variety factors;
(b) Robustness analysis in children domain Y: fixing one of input parents and changing the other.

(b) Randomly selected face images on by the pre-trained children domain
generator 𝐺𝒴" (unsupervised, generated from random latent codes). The
unreal regions or artifacts are highlighted by green rectangles.

(a) Randomly selected face images on FF-Dataset validation set generated
by the full ChildPredictor (supervised, conditioned on parent images). There
are almost no artifacts.

Fig. 9. Illustration of child face prediction results by supervised ChildPredictor and the unsupervised pre-trained children domain generator G
′
Y . There are

32 images shown for each setting, which are randomly sampled from 6800 predicted face images.

TABLE VIII
COMPARISON OF THE FID FOR THE FULL CHILDPREDICTOR AND THE

PRE-TRAINED CHILDREN DOMAIN GENERATOR G
′
Y ON VALIDATION SET.

Method FID ↓
Full ChildPredictor (supervised learning) 50.77
Pre-trained G

′
Y (unsupervised learning) 53.89

G. Supervised Learning Analysis

To demonstrate the information from parents improves the
child prediction quality, we compare results from the full
ChildPredictor framework with randomly generated samples
from the pre-trained PGGAN (G

′

Y ). The parent-child pairs are
utilized for supervised learning for our framework. Note that
G

′

Y is pre-trained in an unsupervised manner (following PG-
GAN training as Equation 9); therefore, the weights are not the

same as GY in the ChildPredictor framework. There are overall
6800 generated face images on validation set by ChildPredictor
and we also randomly generate 6800 samples by pre-trained
GY . To compare the image generation quality of supervised
learning and unsupervised learning, we compute the FID for
them on validation set and the results are concluded in Table
VIII. It shows that results from the full ChildPredictor are
more similar to real child faces in the validation set than the
pre-trained PGGAN G

′

Y .

In addition, we illustrate the generated results of the full
ChildPredictor and G

′

Y in Figure 9. It is obvious that the
children domain generator can predict faces with better quality
conditioned on parent images. The supervised learning pro-
vides a more fixed latent space for children domain generator
GY ; therefore, it can produce more reasonable faces.
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faces:

Input 1 PredictedInput 2

(a) Child face prediction results on grandparents. Faces are
extracted by dlib. “Input 1” and “Input 2” denote the “father input”
and “mother input” for the ChildPredictor, respectively.

Input 1 PredictedInput 2

(b) Child face prediction results on black background. Faces are
extracted by dlib. “Input 1” and “Input 2” denote the “father input”
and “mother input” for the ChildPredictor , respectively.

Extracted
& aligned
faces:

Fig. 10. Illustration of child face prediction results on grandparents and black background, respectively. The original images are also shown for reference.

DualGAN CycleGAN UNIT MUNITDRIT DRIT++Parents ChildPredictor Real ChildDataset

FIW

FIW

Family101

FIW

Fig. 11. Illustration of some generated samples by ChildPredictor (red background) and I2I baselines (yellow background). Input parents and real children
are shown in the left and right, respectively. The samples are selected from the processed FIW dataset and Family101 dataset, respectively.

H. Experiment on Other Circumstances

We consider two other circumstances: 1) The “parents”
are replaced by “grandparents” and 2) The background is
darkened. The predicted child faces are illustrated in Figure
10, where results from the normal setting are also shown for
comparisons. In case 1), the ChildPredictor can still output
child face given grandparent faces. It is because the mapping
function can still map the grandparents’ genetic factors to child
genetic factors in the learned space, while the children domain
generator transforms the predicted child genetic factors to
child faces. In case 2), the ChildPredictor can still predict a
face similar with ground truth when changing the background
color (e.g., the background color is darkened in Figure 10
(b)). However, the two predicted child faces under normal
lighting condition and dark background are not very similar. It
is because different background colors are not modeled during
the training. In future work, we will consider it and make the
ChildPredictor more robust.

I. Experiment on Other Datasets

To further evaluate the proposed ChildPredictor, we include
two more datasets: Families in the Wild (FIW)2 [88] and Fam-
ily1013 [89]. However, the original images in the datasets are
not processed with the same pipeline as FF-Database, or have
different image resolutions and formats (e.g., grayscale for-
mat). To minimize the gap, we apply the same pre-processing
procedures to the images in the two datasets. In addition, we
manually exclude some grandparent-parent pairs and some
profile face images. The pre-processing procedures result in
50 validation pairs from the FIW dataset (extracted from
“F0001” to “F0200” of FIW training images) and 17 validation
pairs from the Family101 dataset, respectively. They are of
128×128 resolution and not overlapped with FF-Database
images. The processed images will be publicly available.

2https://web.northeastern.edu/smilelab/fiw/
3http://chenlab.ece.cornell.edu/projects/KinshipClassification/index.html
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TABLE IX
QUANTITATIVE ANALYSIS OF BASELINES AND OUR CHILDPREDICTOR ON

COSINE DISTANCE AND LPIPS METRICS. THE RESULTS ON FIW AND
FAMILY101 ARE SEPARATELY REPRESENTED.

Method FIW Family101
Cos. Dis. ↑ LPIPS ↑ Cos. Dis. ↑ LPIPS ↑

DualGAN 0.3533 / 0.3612 /
CycleGAN 0.3649 / 0.3771 /
UNIT 0.3793 / 0.3878 /
DRIT 0.3666 0.0047 0.3531 0.0049
MUNIT 0.3658 0.1727 0.3665 0.1715
DRIT++ 0.1907 0.0065 0.1648 0.0069
ChildPredictor 0.4259 0.2247 0.3914 0.2323

Since the validation sets are relatively small, we only
adopt the cosine distance and LPIPS as quantitative met-
rics because they evaluate the pairwise image quality. The
baselines and ChildPredictor trained on the FF-Database are
used in the experiment. Note that the DNA-Net cannot well
generalize to FIW and Family101 images (e.g., predicted faces
are extremely ambiguous) so we do not include it in the
experiment. The quantitative results are concluded in Table
IX. The proposed ChildPredictor achieves better performances
than other methods according to face prediction similarity and
diversity on both datasets. The results are consistent with the
conclusion on the FF-Database validation set.

Some samples are illustrated in Figure 11. Compared with
other methods, ChildPredictor predicts more similar faces to
real children, more diverse faces, and higher-quality faces. For
instance, I2I baselines (please see the yellow background in
Figure 11) still produce faces with very similar shapes to input
mothers, i.e., appearance collapse. However, ChildPredictor
does not have this issue since the mapping is performed in
the genetic domain, while the face-prediction-irrelevant factors
are disentangled. The visual results also demonstrate that the
proposed ChildPredictor has better generalization ability since
it is not trained on these two datasets.

J. Experiment on Famous Families

We download 4 famous family images from the Internet for
testing the ChildPredictor. The same pre-processing pipeline
is applied to these images. The predicted face images are
illustrated in Figure 12. The ChildPredictor framework can
predict reasonable child faces for these real-world cases.

K. Limitation of ChildPredictor Framework

For many situations, ChildPredictor can generate high-
quality child faces. However, there are some common failure
cases shown in Figure 13 including: side face input (left two
samples) and low-quality input (right two samples). It may
be because there are little profile or low-quality faces in FF-
Database. In the future, we will enhance the ChildPredictor to
be more robust to such input images.

VI. BROADER IMPACT

The success of ChildPredictor depends on the proposed
large-scale FF-database. Although the faces in the dataset are
anonymous, they may be sensitive to privacy issues. We are

Father Mother Real child Predicted 1 Predicted 2 Father Mother Predicted

Fig. 12. Illustration of child face prediction results on 4 famous family images
downloaded from the Internet.

Father Mother Real child PredictedFather Mother Real child Predicted

Fig. 13. Illustration of common failure predicted faces.

strongly aware that privacy protection is a significant issue
in the community. To largely protect privacy: 1) We plan not
to disclose original face images of the FF-Database; however,
we will alternatively release the features extracted by state-of-
the-art face recognition networks for future study. 2) In terms
of application, we encode faces by an irreversible process
and delete the background data; 3) In terms of algorithm,
we can adopt privacy-preserving generative models [90]–[93].
These methods promote discoveries that may be hindered by
data-protection barriers and maintain the reproducibility of
the algorithm; 4) In terms of generated data, we can learn
the characteristics of generated samples to identify them [94].
They are orthogonal work and we will not include them in this
paper. In the future, we will use them to enhance the privacy
protection of ChildPredictor.

The ChildPredictor can synthesize realistic child faces from
parents. It helps to solve many social issues, such as missing
child identification and criminal investigations. However, to
avoid improper use, we are very cautious about the pros and
cons of ChildPredictor. We will strictly control the use of
ChildPredictor in the aforementioned social applications.

VII. CONCLUSION

In this paper, we presented a ChildPredictor framework to
automatically predict diverse child faces from parents. In order
to simulate a biological process, we formulate it as a genetic
factor mapping problem. We learn this mapping from parents
to children in the latent space. We adopt the encoder-generator
architecture to connect the image spaces and latent spaces of
the parent and children domains. To extract precise genetic
factors, we exclude external factors (facial attributes) and
variety factors (individual properties) based on disentangled
learning. For the parent domain, it is achieved by enforcing
classification loss on generated faces. For the children domain,
it is implemented by regularizing the latent space by a GAN
encoder. We collected a large-scale Family Face Database
(FF-Database) to train the ChildPredictor. It includes 16046
faces (7148 parent faces and 8190 child faces) with labeled
facial attributes. Finally, we validated the ChildPredictor with
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several state-of-the-art methods by both quantitative analysis
and human perceptual study on the FF-Database. Experiment
results demonstrate that our ChildPredictor can predict higher-
quality, more diverse, and more realistic child faces than state-
of-the-art methods.

ACKNOWLEDGMENT

The authors would like to thank Kangcheng Liu, Qinbin
Li, Zhanghan Ke, and Yurou Zhou for their reviews, and Su
Wang for labeling a part of facial attributes in the proposed FF-
Database. The authors would also like to thank the anonymous
reviewers and editors for their helpful comments.

REFERENCES

[1] S. Xia, M. Shao, and Y. Fu, “Kinship verification through transfer
learning,” in Proc. IJCAI, 2011, pp. 2539–2544.

[2] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou, “Neighborhood
repulsed metric learning for kinship verification,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 36, no. 2, pp. 331–345, 2013.

[3] H. Dibeklioglu, A. Ali Salah, and T. Gevers, “Like father, like son: Facial
expression dynamics for kinship verification,” in Proc. ICCV, 2013, pp.
1497–1504.

[4] Y. Sun, J. Li, Y. Wei, and H. Yan, “Video-based parent-child relationship
prediction,” in Proc. VCIP, 2018, pp. 1–4.

[5] W. Li, S. Wang, J. Lu, J. Feng, and J. Zhou, “Meta-mining discriminative
samples for kinship verification,” in Proc. CVPR, 2021, pp. 16 135–
16 144.

[6] U. Park, Y. Tong, and A. K. Jain, “Age-invariant face recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 947–954, 2010.

[7] Z. Huang, J. Zhang, and H. Shan, “When age-invariant face recognition
meets face age synthesis: A multi-task learning framework,” in Proc.
CVPR, 2021, pp. 7282–7291.

[8] C. Yan, L. Meng, L. Li, J. Zhang, Z. Wang, J. Yin, J. Zhang, Y. Sun, and
B. Zheng, “Age-invariant face recognition by multi-feature fusionand de-
composition with self-attention,” ACM Trans. on Multimedia Computing,
Communications, and Applications, vol. 18, no. 1s, pp. 1–18, 2022.

[9] J. Zhao, S. Yan, and J. Feng, “Towards age-invariant face recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 474–487,
2022.

[10] W. Wang, S. You, and T. Gevers, “Kinship identification through joint
learning using kinship verification ensembles,” in Proc. ECCV, 2020,
pp. 613–628.

[11] P. S. Chandran, N. Byju, R. Deepak, K. Nishakumari, P. Devanand, and
P. Sasi, “Missing child identification system using deep learning and
multiclass svm,” in Proc. IEEE RAICS, 2018, pp. 113–116.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. NeurIPS, 2014, pp. 2672–2680.

[13] P. Gao, J. Robinson, J. Zhu, C. Xia, M. Shao, and S. Xia, “Dna-net:
Age and gender aware kin face synthesizer,” in Proc. ICME, 2021, pp.
1–6.

[14] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang,
“Diverse image-to-image translation via disentangled representations,”
in Proc. ECCV, 2018, pp. 35–51.

[15] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsuper-
vised image-to-image translation,” in Proc. ECCV, 2018, pp. 172–189.

[16] H.-Y. Lee, H.-Y. Tseng, Q. Mao, J.-B. Huang, Y.-D. Lu, M. Singh, and
M.-H. Yang, “Drit++: Diverse image-to-image translation via disentan-
gled representations,” Int. J. Comput. Vis., pp. 1–16, 2020.

[17] Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by condi-
tional adversarial autoencoder,” in Proc. CVPR, 2017, pp. 5810–5818.

[18] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Proc. CVPR, 2019, pp. 4401–4410.

[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. ICCV,
2017, pp. 2223–2232.

[20] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation,” in Proc. ICCV, 2017, pp. 2849–
2857.

[21] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Proc. NeurIPS, 2017, pp. 700–708.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proc. NeurIPS, 2017, pp. 6626–6637.

[23] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proc. CVPR, 2018, pp. 586–595.

[24] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang, “Mode seeking
generative adversarial networks for diverse image synthesis,” in Proc.
CVPR, 2019, pp. 1429–1437.

[25] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. ICML, 2017, pp. 214–223.

[26] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[27] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
gans for improved quality, stability, and variation,” in Proc. ICLR, 2018.

[28] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in Proc.
CVPR, 2020, pp. 8110–8119.

[29] G. Lore, A. Alex, O. Aude, and I. Phillip, “Ganalyze: Toward visual
definitions of cognitive image properties,” in Proc. ICCV, 2019, pp.
5744–5753.

[30] J. Ali, C. Lucy, and I. Phillip, “On the ”steerability” of generative
adversarial networks,” in Proc. ICLR, 2019.

[31] D. Bau, J.-Y. Zhu, J. Wulff, W. Peebles, H. Strobelt, B. Zhou, and
A. Torralba, “Inverting layers of a large generator,” in Proc. ICLR
Workshop, 2019, p. 4.

[32] A. Gabbay and Y. Hoshen, “Style generator inversion for image en-
hancement and animation,” arXiv preprint arXiv:1906.11880, 2019.

[33] R. Abdal, Y. Qin, and P. Wonka, “Image2stylegan: How to embed images
into the stylegan latent space?” in Proc. ICCV, 2019, pp. 4432–4441.

[34] Abdal, Rameen and Qin, Yipeng and Wonka, Peter, “Image2stylegan++:
How to edit the embedded images?” in Proc. CVPR, 2020, pp. 8296–
8305.

[35] Y. Shen, J. Gu, X. Tang, and B. Zhou, “Interpreting the latent space of
gans for semantic face editing,” in Proc. CVPR, 2020, pp. 9243–9252.

[36] Y. Viazovetskyi, V. Ivashkin, and E. Kashin, “Stylegan2 distillation for
feed-forward image manipulation,” arXiv preprint arXiv:2003.03581,
2020.

[37] E. Richardson, Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar, S. Shapiro,
and D. Cohen-Or, “Encoding in style: a stylegan encoder for image-to-
image translation,” in Proc. CVPR, 2021, pp. 2287–2296.

[38] O. Langner, R. Dotsch, G. Bijlstra, D. H. Wigboldus, S. T. Hawk, and
A. Van Knippenberg, “Presentation and validation of the radboud faces
database,” Cognition and Emotion, vol. 24, no. 8, pp. 1377–1388, 2010.

[39] G. Perarnau, v. d. W. Joost, B. Raducanu, and M. A. Jose, “Invertible
conditional gans for image editing,” in Proc. NeurIPS Workshop, 2016.

[40] S. Zhou, T. Xiao, Y. Yang, D. Feng, Q. He, and W. He, “Genegan:
Learning object transfiguration and attribute subspace from unpaired
data,” in Proc. BMVC, 2017, pp. 111.1–111.13.

[41] T. Xiao, J. Hong, and J. Ma, “Dna-gan: Learning disentangled represen-
tations from multi-attribute images,” arXiv preprint arXiv:1711.05415,
2017.

[42] G. Zhang, M. Kan, S. Shan, and X. Chen, “Generative adversarial
network with spatial attention for face attribute editing,” in Proc. ECCV,
2018, pp. 417–432.

[43] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation,” in Proc. CVPR, 2018, pp. 8789–8797.

[44] L. Song, Z. Lu, R. He, Z. Sun, and T. Tan, “Geometry guided adversarial
facial expression synthesis,” in Proc. ACM MM, 2018, pp. 627–635.

[45] T. Li, R. Qian, C. Dong, S. Liu, Q. Yan, W. Zhu, and L. Lin, “Beautygan:
Instance-level facial makeup transfer with deep generative adversarial
network,” in Proc. ACM MM, 2018, pp. 645–653.

[46] A. Pumarola, A. Agudo, A. M. Martinez, A. Sanfeliu, and F. Moreno-
Noguer, “Ganimation: Anatomically-aware facial animation from a
single image,” in Proc. ECCV, 2018, pp. 818–833.

[47] T. Xiao, J. Hong, and J. Ma, “Elegant: Exchanging latent encodings with
gan for transferring multiple face attributes,” in Proc. ECCV, 2018, pp.
168–184.

[48] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Attgan: Facial attribute
editing by only changing what you want,” IEEE Trans. Image Process.,
vol. 28, no. 11, pp. 5464–5478, 2019.

[49] Z. He, M. Kan, J. Zhang, and S. Shan, “Pa-gan: Progressive attention
generative adversarial network for facial attribute editing,” arXiv preprint
arXiv:2007.05892, 2020.



IEEE TRANSACTIONS ON MULTIMEDIA 15

[50] Y. Nitzan, A. Bermano, Y. Li, and D. Cohen-Or, “Face identity disen-
tanglement via latent space mapping,” arXiv preprint arXiv:2005.07728,
2020.

[51] O. Tov, Y. Alaluf, Y. Nitzan, O. Patashnik, and D. Cohen-Or, “Designing
an encoder for stylegan image manipulation,” ACM Trans. on Graphics,
vol. 40, no. 4, pp. 1–14, 2021.

[52] X. Zhu, C. Xu, and D. Tao, “Learning disentangled representations with
latent variation predictability,” in Proc. ECCV, 2020, pp. 684–700.

[53] ——, “Where and what? examining interpretable disentangled represen-
tations,” in Proc. CVPR, 2021, pp. 5861–5870.

[54] Z. He, M. Kan, and S. Shan, “Eigengan: Layer-wise eigen-learning for
gans,” in Proc. ICCV, 2021, pp. 14 408–14 417.

[55] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. CVPR, 2017, pp. 1125–
1134.

[56] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial
training,” in Proc. CVPR, 2017, pp. 2107–2116.

[57] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversarial
networks,” in Proc. CVPR, 2017, pp. 3722–3731.

[58] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover
cross-domain relations with generative adversarial networks,” in Proc.
ICML, 2017, pp. 1857–1865.

[59] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image
synthesis for multiple domains,” in Proc. CVPR, 2020, pp. 8188–8197.

[60] J. Lin, Y. Pang, Y. Xia, Z. Chen, and J. Luo, “Tuigan: Learning versatile
image-to-image translation with two unpaired images,” in Proc. ECCV,
2020, pp. 18–35.

[61] H. Chen, Y. Wang, H. Shu, C. Wen, C. Xu, B. Shi, C. Xu, and
C. Xu, “Distilling portable generative adversarial networks for image
translation,” in Proc. AAAI, 2020, pp. 3585–3592.

[62] D. Bhattacharjee, S. Kim, G. Vizier, and M. Salzmann, “Dunit:
Detection-based unsupervised image-to-image translation,” in Proc.
CVPR, 2020, pp. 4787–4796.

[63] Y. Liu, E. Sangineto, Y. Chen, L. Bao, H. Zhang, N. Sebe, B. Lepri,
W. Wang, and M. D. Nadai, “Smoothing the disentangled latent style
space for unsupervised image-to-image translation,” in Proc. CVPR,
2021, pp. 10 785–10 794.

[64] F. Pizzati, P. Cerri, and R. d. Charette, “Comogan: continuous model-
guided image-to-image translation,” in Proc. CVPR, 2021, pp. 14 288–
14 298.

[65] X. Li, S. Zhang, J. Hu, L. Cao, X. Hong, X. Mao, F. Huang, Y. Wu,
and R. Ji, “Image-to-image translation via hierarchical style disentan-
glement,” in Proc. CVPR, 2021, pp. 8639–8648.

[66] H. Emami, M. M. Aliabadi, M. Dong, and R. B. Chinnam, “Spa-
gan: Spatial attention gan for image-to-image translation,” IEEE Trans.
Multimedia, vol. 23, pp. 391–401, 2020.

[67] S. Kwong, J. Huang, and J. Liao, “Unsupervised image-to-image transla-
tion via pre-trained stylegan2 network,” IEEE Trans. Multimedia, 2021.

[68] S. Gu, Y. Li, L. V. Gool, and R. Timofte, “Self-guided network for fast
image denoising,” in Proc. ICCV, 2019, pp. 2511–2520.

[69] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Free-form
image inpainting with gated convolution,” in Proc. ICCV, 2019, pp.
4471–4480.

[70] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C. Change Loy, “Esrgan: Enhanced super-resolution generative adver-
sarial networks,” in Proc. ECCV Workshop, 2018, pp. 0–0.

[71] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. MICCAI, 2015, pp. 234–
241.

[72] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in Proc. ICML, 2017, pp. 2642–2651.

[73] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. ICML,
2015, pp. 448–456.

[74] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. ICML, 2013, p. 3.

[75] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[76] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. ICML, 2010, pp. 807–814.

[77] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. ICCV, 2015, pp. 1026–1034.

[78] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2014.

[79] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016, pp. 770–778.

[80] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

[81] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2014.

[82] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in Proc. CVPR, 2017, pp.
212–220.

[83] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu,
“Cosface: Large margin cosine loss for deep face recognition,” in Proc.
CVPR, 2018, pp. 5265–5274.

[84] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in Proc. ICCV, 2015, pp. 3730–3738.

[85] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. CVPR, 2016,
pp. 2818–2826.

[86] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009, pp.
248–255.

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. NeurIPS, 2012, pp.
1097–1105.

[88] J. P. Robinson, M. Shao, Y. Wu, H. Liu, T. Gillis, and Y. Fu, “Visual
kinship recognition of families in the wild,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 11, pp. 2624–2637, 2018.

[89] R. Fang, A. C. Gallagher, T. Chen, and A. Loui, “Kinship classification
by modeling facial feature heredity,” in Proc. ICIP, 2013, pp. 2983–
2987.

[90] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private
generative adversarial network,” arXiv preprint arXiv:1802.06739, 2018.

[91] Z. Lin, V. Sekar, and G. Fanti, “On the privacy properties of gan-
generated samples,” in Proc. AISTATS, 2021, pp. 1522–1530.

[92] D. Chen, T. Orekondy, and M. Fritz, “Gs-wgan: A gradient-sanitized ap-
proach for learning differentially private generators,” in Proc. NeurIPS,
2020, pp. 12 673–12 684.

[93] T. Xiao, Y.-H. Tsai, K. Sohn, M. Chandraker, and M.-H. Yang, “Adver-
sarial learning of privacy-preserving and task-oriented representations,”
in Proc. AAAI, 2020, pp. 12 434–12 441.

[94] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “Cnn-
generated images are surprisingly easy to spot... for now,” in Proc.
CVPR, 2020, pp. 8695–8704.

Yuzhi Zhao (S’19) received the B.Eng. Degree in
electronic information from Huazhong University of
Science and Technology, Wuhan, China, in 2018. He
is currently pursuing the Ph.D. degree with the De-
partment of Electronic Engineering, City University
of Hong Kong. His research interests include image
processing and deep learning, particularly generative
models, image & video enhancement, and low-level
& physic-based computer vision.

Lai-Man Po (M’92–SM’09) received the B.S. and
Ph.D. degrees in electronic engineering from the
City University of Hong Kong, Hong Kong, in 1988
and 1991, respectively. He has been with the De-
partment of Electronic Engineering, City University
of Hong Kong, since 1991, where he is currently
an Associate Professor of Department of Electrical
Engineering. He has authored over 150 technical
journal and conference papers. His research interests
include image and video coding with an emphasis
deep learning based computer vision algorithms.

Dr. Po is a member of the Technical Committee on Multimedia Systems and
Applications and the IEEE Circuits and Systems Society. He was the Chairman
of the IEEE Signal Processing Hong Kong Chapter in 2012 and 2013. He
was an Associate Editor of HKIE Transactions in 2011 to 2013. He also
served on the Organizing Committee, of the IEEE International Conference on
Acoustics, Speech and Signal Processing in 2003, and the IEEE International
Conference on Image Processing in 2010.



IEEE TRANSACTIONS ON MULTIMEDIA 16

Xuehui Wang (S’21) received the B.S. Degree from
Shandong University, China, and the Master degree
in the School of Computer Science from Sun Yat-sen
Uninversity, China, in 2018 and 2021, respectively.
He is currently pursuing the PhD degree at Artificial
Intelligence Institute, Shanghai Jiao Tong University,
China. His research interests include computer vi-
sion (super resolution, instance segmentation), deep
learning.

Qiong Yan received her Ph.D. degree in computer
science and engineering from Chinese University of
Hong Kong in 2013 and the Bachelor’s degree in
computer science and technology from University
of Science and Technology of China in 2009. She
is now a research director in SenseTime, leading
a group on computational imaging related research
and production. Her research focuses on low-level
vision tasks, such as image/video restoration and
enhancement, image editing and generation.

Wei Shen is a tenure-track Associate Professor at the
Artificial Intelligence Institute, Shanghai Jiao Tong
University, since October 2020. Before that, he was
an Assistant Research Professor at the Department
of Computer Science, Johns Hopkins University.
His research interests lie in the fields of computer
vision, machine learning, deep learning, and medical
image analysis. He serves as an Associate Editor for
Neurocomputing and an Area Chair for CVPR 2022.

Yujia Zhang received the B.E. degree in electrical
engineering and automation in Huazhong University
of Science and Technology in 2015, and the M.S.
degree in electrical engineering in South China Uni-
versity of Technology, China, in 2018. He is cur-
rently pursuing the Ph. D. degree in City University
of Hong Kong. His current research interests include
computer vision, video understanding.

Wei Liu received his B.S. and PhD degrees from
Harbin Institute of Technology, Harbin, China, in
2016 and 2020, respectively. He was a visiting
student in the Ohio State University for two years.
He used to be an intern at SenseTime and currently
works as an algorithm engineer at ByteDance. His
research interests include image generation, domain
adaptation, semantic segmentation and low-level
computer vision. Dr. Liu serves as a Peer Reviewer
for IEEE Transactions on Image Processing, ISPRS
Journal of Photogrammetry and Remote Sensing,

IEEE Transactions on Geoscience and Remote Sensing, etc.

Chun-Kit Wong is pursuing the B.Eng. Degree of
Information Engineering in City University of Hong
Kong. His research interests include deep learning
and computer vision.

Chiu-Sing Pang is pursuing the B.Eng. Degree
of Engineering in Information Engineering in City
University of Hong Kong. His research interests
include deep learning and computer vision.

Weifeng Ou received his B.Eng. degree in Telecom-
munication Engineering from Guangdong University
of Technology in 2013, his M.Eng. degree in Signal
& Information Processing from South China Uni-
versity of Technology in 2016, and his Ph.D. degree
in the Department of Electrical Engineering from
City University of Hong Kong in 2021. He was with
Huawei as an R & D engineer from 2016 to 2018.
He is currently working in Sensetime. His research
interests include biometrics and deep learning.

Wing-Yin Yu received the B.Eng. degree in Infor-
mation Engineering from City University of Hong
Kong, in 2019. He is currently pursuing the Ph.D.
degree at Department of Electrical Engineering at
City University of Hong Kong. His research interests
are deep learning and computer vision.

Buhua Liu received the B.Eng. degree in School
of Electronic Information and Communications from
Huazhong University of Science and Technology,
Wuhan, China, in 2019. He is currently pursuing
the Ph.D. degree with the Department of Computer
Science, Hong Kong Baptist University. His research
interests lie in the fields of AI security, privacy and
computer vision, particularly in adversarial learning,
federated learning.


	I Introduction
	II Related Work
	III Data Collection of FF-Database
	IV Methodology
	IV-A Problem Formulation
	IV-B Domain-specific Disentangled Learning
	IV-B1 Assumption
	IV-B2 Parent Domain X
	IV-B3 Children Domain Y

	IV-C Inter-domain Multimodal Mapping
	IV-D Network Architecture
	IV-D1 Parent Domain X
	IV-D2 Children Domain Y
	IV-D3 Mapping Function T


	V Experiment
	V-A Training Details
	V-B Experiment Settings
	V-B1 Baselines
	V-B2 Evaluation

	V-C Experiment on Child Face Prediction Reality
	V-C1 Qualitative Analysis
	V-C2 Quantitative Analysis
	V-C3 Human Perceptual Study

	V-D Ablation Study
	V-D1 Disentangled Learning Ability
	V-D2 Generation Diversity
	V-D3 Other Terms

	V-E Experiment on Disentangled Learning
	V-F Disentangled Learning and Robustness Analysis
	V-G Supervised Learning Analysis
	V-H Experiment on Other Circumstances
	V-I Experiment on Other Datasets
	V-J Experiment on Famous Families
	V-K Limitation of ChildPredictor Framework

	VI Broader Impact
	VII Conclusion
	References
	Biographies
	Yuzhi Zhao
	Lai-Man Po
	Xuehui Wang
	Qiong Yan
	Wei Shen
	Yujia Zhang
	Wei Liu
	Chun-Kit Wong
	Chiu-Sing Pang
	Weifeng Ou
	Wing-Yin Yu
	Buhua Liu


