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Abstract

Video-based human pose transfer is a video-to-video
generation task that animates a plain source human im-
age based on a series of target human poses. Considering
the difficulties in transferring highly structural patterns on
the garments and discontinuous poses, existing methods of-
ten generate unsatisfactory results such as distorted textures
and flickering artifacts. To address these issues, we propose
a novel Deformable Motion Modulation (DMM) that uti-
lizes geometric kernel offset with adaptive weight modula-
tion to simultaneously perform feature alignment and style
transfer. Different from normal style modulation used in
style transfer, the proposed modulation mechanism adap-
tively reconstructs smoothed frames from style codes ac-
cording to the object shape through an irregular recep-
tive field of view. To enhance the spatio-temporal consis-
tency, we leverage bidirectional propagation to extract the
hidden motion information from a warped image sequence
generated by noisy poses. The proposed feature propa-
gation significantly enhances the motion prediction ability
by forward and backward propagation. Both quantitative
and qualitative experimental results demonstrate superior-
ity over the state-of-the-arts in terms of image fidelity and
visual continuity. The source code is publicly available at
github.com/rocketappslab/bdmm.

1. Introduction

The video-based human pose transfer is a task to animate
a plain source image according to a series of desired pos-
tures. It is challenging due to problems of spatio-temporally
discontinuous poses and highly structural texture misalign-
ment as depicted in Figure 1. In this paper, we aim to
tackle these problems with an end-to-end generative model
to maximize the value of applications in various domains
including person re-identification [49], fashion recommen-
dation [13, 20], and virtual try-on [8, 33, 42].

Existing works focus on three categories to solve the
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Figure 1. Examples of a synthesized video clip based on some
noisy poses. Existing methods such as GFLA [35] and Imperson-
ator++ [25] fail to generate realistic videos due to problems of
spatio-temporally discontinuous poses and highly structural tex-
ture misalignment while our method can generate highly plausi-
ble texture with seamless transition between consecutive frames.
Please zoom in for more details.

spatial misalignment problem, including prior generation
[7, 27, 28, 45, 46], attention module [34, 39, 52], and flow
warping [35, 48]. There are many side effects in these
methods such as spatially misaligned content, blurry vi-
sual quality and unreliable flow prediction. Some methods
[22, 24, 25] proposed to obtain the spatial transformation
flow by computing the vertex matching in 3D neural ren-
dering process. The main advantage is to preserve more
texture details of the source image. However, the genera-
tive networks struggle to render new content for occluded
regions since flows in such regions are not accurate.

To obtain animated sequences with smooth human ges-
ture movements, the temporal coherence is the main deter-
minant. Different from most of the generative tasks such as
inpainting or super-resolution, the conditional inputs of the
sequence in this task are noisy. It is because the existing
third-party human pose extractors [2, 10, 21] fail to extract
accurate pose labels in the video frames. It increases the
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difficulty to predict the temporal correspondence for gen-
erating a smooth sequence of frames, especially the highly
structural patterns on garments and occluded regions. In
general, previous works [24, 25, 35, 35] mainly use recur-
rent neural networks to solve this problem by taking the pre-
viously generated result as the input of current time step.
However, the perceptual quality is still unsatisfactory due
to limited receptive field of view along time space. We ob-
serve that solely relying on unidirectionally hidden states in
recurrent units to interpolate the missing content is insuffi-
cient. It motivates us to utilize all the frames within the mini
batch to stabilize the temporal statistics in the generated se-
quence.

To alleviate the aforementioned problems, we propose a
novel modulation mechanism – Deformable Motion Modu-
lation (DMM) incorporated with bidirectional recurrent fea-
ture propagation to perform spatio-temporal affine transfor-
mation and style transfer simultaneously. It is designed with
three major components, including motion offset, motion
mask and the modulated style weight. To strengthen the
temporal consistency, the motion offset and mask are re-
sponsible for estimating the local geometric transformation
based on the features of two spatially misaligned adjacent
frames, in which the feature branches come from both for-
ward propagation branch and backward propagation branch.
The bidirectional feature propagation encapsulates the tem-
poral information of the entire sequence so that a long-
range temporal correspondence of a sequence from the for-
ward flow to the backward flow can be captured at current
time. By maintaining more semantic details from the source
image to process the coarsely aligned features, the style
weights are modulated by the style codes extracted from
the source image. The corresponding affine transformation
is enhanced with the augmented spatial-temporal sampling
offset. It can produce a dynamic receptive field of view to
track semantics so that it can synthesize a sequence of plau-
sible and smooth video frames. The main contributions of
this work can be summarized as follows:

• We propose a novel Deformable Motion Modula-
tion that utilizes geometric kernel offset with adaptive
weight modulation to perform spatio-temporal affine
transformation and style transfer simultaneously;

• We design a bidirectionally recurrent feature propaga-
tion on coarsely warped images to generate target im-
ages on top of noisy poses so that a long-range tempo-
ral correspondence of the sequence can be captured at
current time;

• We demonstrate the superiority of our method in both
quantitative and qualitative experimental results with a
significant enhancement in perceptual quality in terms
of visual fidelity and temporal consistency.

2. Related Work
Human Pose Transfer. Recent research in image-based

human pose transfer can be categorized as prior-based,
attention-based, and flow-based. Initial methods [28, 45]
proposed a prior-based generative model to combine the
generated results with residual priors. In addition to resid-
ual maps, some solutions [7, 27] proposed to pre-generate
the target parsing maps in order to enhance the semantic
correspondence. Yu et al. [46] also introduced an edge
prior to reconstruct the fragile high frequency on the char-
acteristics of garments. Although these priors are tailor-
made to reconstruct details of the source image, inaccu-
rately generated priors limit the ability to synthesize new
content, especially when encountering large occlusion vari-
ations. Some attention-based methods proposed to compute
dense correspondences in feature space via activated pose
attention [52] and spatial attention [34, 39]. Despite the
fact that these kinds of attentional operations can achieve
better scores in some quantitative evaluation metrics such
as FID, the qualitative visualizations show a blurry effect on
the generated images due to insufficient texture and shape
guidance. In view of this problem, flow-based methods
[22,35,48] warped the features of the source image by esti-
mating the pose correspondence. Notwithstanding that they
can preserve the characteristics of the source image, unreli-
able optical flow prediction is a bottleneck for these meth-
ods to transfer complex texture patterns.

Apart from spatial transformation, the video-based hu-
man pose transfer has an additional challenge on maintain-
ing temporal consistency. Current approaches [24, 25, 35]
employed unidirectional forward propagation in recurrent
networks to extract the hidden temporal information. How-
ever, it is insufficient to produce a spatio-temporally smooth
sequence due to the problem of noisy pose that cannot be
detected at certain time steps. To address this issue, Ren
et al. [35] used a convolution network to preprocess the
2D skeletons by transferring knowledge of 3D pose estima-
tion in advance. Due to the domain gap between different
datasets, reducing the number of key points in the heatmap
limits the ability of flow prediction. Without training an ex-
tra network to perform noisy pose recovery, our method is
still able to generate temporally coherent videos transferred
from source images.

Video-to-video Generation. With the success of condi-
tional Generative Adversarial Networks [9, 31](cGANs),
video-to-video models convert semantic input videos to
photorealistic videos. Wang et al. [43] introduced a se-
quential generative model to extract feature correlations
from adjacent frames. Due to weak spatial transformation
ability, it failed to produce plausible images. Siarohin et al.
[36, 37] suggested to simulate the motion directly from the
driving images by using zeroth-order and first-order Taylor
series expansions to estimate the transformation flow. How-
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Figure 2. Illustration of the proposed Deformable Motion Mod-
ulation (DMM) module. The motion offset and motion mask are
parametrized by the output of coarsely warped features fi−1 in for-
ward branch or bi+1 (skipped for simplicity) in backward branch,
the output results generated from previous layer x̃l−1

i at time i,
and the affine transformation based on Is.

ever, it sacrificed the controllability of generating images on
arbitrary poses because of domain gaps.

Deformable Convolutional Networks. Due to the
shortcoming of geometric transformations in Convolutional
Neural Networks (CNNs) [19], Deformable Convolutional
Networks (DCNs) [5,51] suggested to learn the kernel off-
sets by augmenting the spatial sampling locations. The
deformable alignment regressed by flow-guided features
demonstrated effective spatial transformation capabilities in
several generative tasks, including image inpainting [23]
and image super-resolution [4,40]. Inspired by these works,
we have the motivation to enhance the style transfer ability
and the temporal coherence by modulating affine transfor-
mations from the source image.

3. Methodology

To begin with, we define some notations used in this
paper. Given a source person image Is, the correspond-
ing source pose Ps, and a sequence of spatially arbitrary
target pose P (1 : M), where M is the total numbers of
frames in a sequence. The goal of video-based human
pose transfer is to animate the Is according to P (1 : M)
with desired movements including free-form view angles,
postures, or body shapes, etc. The proposed end-to-end
and recurrent generative model G can be formulated as
Î1:M = G (Is, Ps, P1:M ).

3.1. Deformable Motion Modulation (DMM)

The major challenge of video-based pose transfer is to
maintain the spatio-temporally misaligned characteristics of

Is while synthesizing unseen content according to the tar-
get poses. In this subsection, we introduce a new modula-
tion mechanism – Deformable Motion Modulation (DMM)
to synthesize continuous frame sequences by modulating
the affine transform of Is with an augmentation of spatio-
temporal sampling locations. It aims to estimate local geo-
metric transformations on an initially aligned feature space
so that it can enhance the smoothness of the propagated fea-
tures in forward and backward branches. We design the pro-
posed DMM with three components, namely motion offset,
motion mask and style weight, inspired by the success of
Deformable Convolution Network (DCN) [5,51] and Style-
GANv2 [14, 15]. As depicted in Figure 2, we parametrize
them as the output of coarsely warped features fi−1 in the
forward branch or bi+1 in the backward branch, the output
results generated from previous layer x̃l−1

i at time i, and the
source style code from Is. We firstly initialize the standard
convolution as

f̃i (p) =

K∑
k=1

wk · fi (p) + bias , (1)

where K is a set of the sampling location of a kernel, y (p)
is the convoluted result of input x at position p with the sam-
pled weight wk. To equip convolution with modulation and
irregular receptive field of view, we formulate our proposed
DMM as

f̃i (p) =

K∑
k=1

w′′
k · mi→i−1(p) · fi (p+ pk + oi→i−1(p)),

(2)
where pk is the pre-defined kernel offset depending on K,
oi→i−1 ∈ R2K and mi→i−1 ∈ RK are both learnable shift
offsets and a non-negative modulation scalar for a kernel
at p location regressed by the geometric relationship be-
tween the propagated features fi or bi and the previous gen-
eration layer x̃l−1

i , w′′
k is the stylized weights modulated

by the incoming statistics of style code extracted from Is.
More specifically, w′′

k is responsible for manipulating the
style transfer accompanied with the motion mask mi→i−1

so that a long-range spatio-temporal correspondence of the
sequence can be captured at the current time. This goal can
be achieved by computing the weights with demodulation
[15], which is expressed as

w′
jhk = Aj · wjhk, (3)

w′′
jhk = w

′
jhk/

√∑
jk

w′
jhk

2 + ϵ, (4)

where wjhk represents the weights of j-th input feature and
h-th output feature map on k-th sampling kernel location,
i.e., wk ⊂ wjhk, Aj is the j-th scalar from the source style
vector, w′

jhk is computed for estimating the affine transfor-
mation based on the statistics of incoming style code, ϵ is a
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Figure 3. Overview of the proposed model. We use a bidirectional propagation mechanism to manipulate coarsely spatial-aligned sequence
rendered by vertex matching. The pose is encoded to capture structural guidance by a self-recurrent convolution unit by a Structural
Encoder. The generator decoder progressively synthesizes target images by fusing features from forward and backward propagation
branches via the proposed Deformable Motion Modualtion (DMM) block and the source style code extracted by a Style Encoder.

small number to prevent computation from numerical error.
The demodulation can well preserve the semantic details of
the source image while it is able to interpolate unseen con-
tent by considering the forward and backward propagation
features. The augmented spatio-temporal sampling offsets
can also produce dynamic receptive fields of view to track
the semantics of interest so that it can synthesize a sequence
of good-looking and smooth video frames.

3.2. Bidirectional Recurrent Propagation

It has been a challenge to produce stable and smooth
videos simply by relying on current pose to generate the tar-
get person image due to discontinuous noisy poses extracted
by some third-party human skeleton extractors [2, 10, 21].
We introduce a simple bidirectional propagation mecha-
nism to interpolate the probability of missing structural
guidance from both forward and backward propagation.

Mesh Flow. We define the transformation flow as
Fi→s ∈ RH×W×2 between Ps and Pi, where H and W are
height and width of the generated image resolution, Ps and
Pi are the source image and target pose at time i. Follow-

ing previous work [22, 25], we apply SPIN [18] as the 3D
human pose and shape estimator to predict parametric rep-
resentations by inferencing RGB images into the implicit
differentiable model SMPL [26]. The SMPL representation
consists of three major elements, including a weak perspec-
tive camera vector C ∈ R3, a pose vector θ ∈ R72 and a
shape vector β ∈ R10. It parametrizes a triangulated mesh
to produce the explicit pose representation by computing
the corresponding SMPL (θ, β) ∈ R6890×3. By utilizing
Neural Mesh Renderer (NMR) [16] and the SMPL, we
can obtain the corresponding visible vertices of triangulated
faces V ∈ R13776×3×2 between the source and target mesh,
and the weight index map of source mesh W ∈ RH×W×3.
Therefore, we can compute the Fi→s by matching the cor-
respondence of source W and V . The detailed computation
is demonstrated in the Supplementary - Mesh Flow Compu-
tation.

Bidirectional propagation. Once we obtain the trans-
formation flow Fi→s, we perform feature propagation to ex-
tract the latent temporal information in a recurrent manner.
We leverage a bidirectional propagation mechanism to ma-
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nipulate the coarsely spatial-aligned sequence before feed-
ing it into the generator. As shown in Figure 3, the pre-
warped frames are formulated as

xi−N :i+N = warp (Fi→s (Ps, P1:M ) , Is) , (5)

where N = M/2. We use a shared 2D CNN encoder to
independently extract features of xi−N :i+N in both forward
branch F and backward branch B, respectively. With the re-
current propagation, the extracted features at time i are en-
capsulated with the spatio-temporal information across the
entire input sequence in the feature space. The temporal
forward features and backward features computed at time i
are represented as

fi = conv (F (xi)⊚ fi−1) , (6)

bi = conv (B (xi)⊚ bi+1) , (7)

where F (xi) indicates the feature maps of the forward en-
coder F , B (xi) is also used for backward encoder B, and ⊚
denotes concatenation operator. With the recurrent features
from forward and backward propagations, the model can
expand the field of view across the whole input sequence
so that a more robust spatio-temporal consistency is cap-
tured during the generation process. Moreover, the outliers
of input noisy pose at time i can also be interpolated by
the warped features from xi−N :i−1 to xi+1:i+N . With the
assistance of Equation 2, the probability of estimating gen-
erative result can be formulated as

q (xi|Is) =
i∏

i−N

q (fi|fi−1) +

i+N∏
i

q (bi|bi+1) . (8)

The combinations of q (xi|Is) can dramatically provide
positive gain to the network in synthesizing new content by
feature interpolation.

3.3. Objective Loss Function

Following similar training strategies in current pose
transfer frameworks [25, 35], the final objective loss func-
tion in our model is composed of six terms including a spa-
tial adversarial loss Ladv , a spatio-temporal adversarial loss
Ltemp, an appearance loss Ll1, a perceptual loss Lper a
style loss Lgram, and a contextual loss Lcx as follows:

Lfull = λadvLadv + λtempLtemp + λl1Ll1

+λperLper + λgramLgram + λcxLcx ,
(9)

where λadv , λtemp, λ1, λper, λgram, and λcx are the hyper-
parameters to optimize the convergence of the network.

Spatial adversarial loss. We utilize the traditional gen-
erative adversarial loss [9, 29] Ladv to mimic the distribu-
tion of the training set with a convolutional discriminator

Ds. It is formulated as:

Ladv = E
[
log (Ds (Is, Ii)) + log

(
1−Ds

(
Is, Îi

))]
,

(10)
where (Is, Ii) ∈ Ireal, Îi ∈ Ifake , and i ∈ 1 . . .M in-
dicate samples from the distribution of real person image,
generated person image, the numbers of an input patch.

Temporal adversarial loss. Similar to Ladv , the tem-
poral adversarial loss Ltemp optimizes the temporal consis-
tency in time and feature channels of a mini patch with a 3D
CNN discriminator Dt.

Appearance loss. To enforce discriminatively pixel-
level supervision, we employ a pixel-wise L1 loss to pro-
vide guidance on synthesizing photo-realistic appearance
compared to the ground-truth image.

Perceptual loss. To minimize the distance in feature-
level space, we apply a standard perceptual loss [12]. It
computes the L1 difference of a selected layer ℓ = Conv1 2
from a VGG-19 [38] model θℓ (·) pre-trained in ImageNet
[6]. It is defined as

Lper =
∑

CℓHℓWℓ

∥θℓ(Îi)− θℓ(Ii)|∥1, (11)

where Cℓ is the number of channels, Hℓ and Wℓ are the
height and width of the feature maps in a particular layer ℓ
respectively.

Style loss. Similar to the perceptual loss to minimize the
L1 distance in feature-level space, we further calculate the
Gram matrix of some activated feature maps at the selected
layers to maximize the similarities.

Lgram =
∑

CℓHℓWℓ

∥Gram(θℓ(Îi))−Gram(θℓ(Ii)|)∥1, (12)

where the used layers are the same as in perceptual loss.
Contextual loss. To maximize the similarities between

two non-aligned images in context space, we utilize the con-
textual loss [30] to allow spatial alignment according to
contextual correspondence during the deformation process.

Lcx = −
∑

CℓHℓWℓ

log
[
CX

(
δℓ

(
Îi

)
, δℓ (It)

)]
, (13)

where ℓ = relu {3 2, 4 2} layers from a pre-trained VGG-
19 model θ (·), the CX (·) function is the similarity mea-
surement defined in [30].

4. Experiments and Results
4.1. Implementations

Dataset. We conducted experiments on two publicly
available high-resolution video datasets for video-based hu-
man pose transfer, including FashionVideo [47] and iPER
[24]. Both are collected from a human-centric manner with
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Models FashionVideo iPER
SSIM↑ PSNR↑ l1↓ FID↓ LPIPS↓ FVD-Train128f↓ FVD-Test128f↓ SSIM↑ PSNR↑ L1↓ FID↓ LPIPS↓ FVD-Train128f↓ FVD-Test128f↓

GFLA [35] 0.892 21.309 0.0459 16.308 0.0922 195.205±3.036 256.430±7.459 0.797 20.898 0.085 25.075 0.149 684.101±11.215 796.112±37.071
Impersonator++ [25] 0.873 21.434 0.0502 22.363 0.0761 197.668±2.309 175.663±5.857 0.755 18.689 0.103 33.629 0.173 714.519±13.813 742.394±30.208

DPTN [48] 0.907 23.996 0.0335 15.342 0.0603 215.078±2.252 206.345±6.522 0.742 17.997 0.110 34.204 0.209 1003.598±14.715 1143.603±33.631
NTED [34] 0.890 22.025 0.0425 14.263 0.0728 278.854±3.505 324.128±7.753 0.771 19.320 0.091 20.164 0.162 784.509±12.908 916.489±46.471

Ours 0.918 24.071 0.0302 14.083 0.0478 168.275±2.564 148.253±6.781 0.803 21.797 0.0724 22.291 0.120 500.226±11.670 536.084±29.200
Table 1. Quantitative comparisons with some state-of-the-art methods on the FashionVideo and iPER benchmarks. The best scores are
highlighted in bold format.

Reference Image Target Pose Ground Truth GFLA Impersonator++ DPTN NTED Ours

Figure 4. Qualitative comparisons of pose transfer with some
state-of-the-art methods on DanceFashion and iPER benchmarks.
Please zoom in for more details.

diverse garments, poses, viewpoints, and occlusion scenar-
ios. The FashionVideo consists of 600 videos with around
350 frames per video. It is partitioned into 500 videos for
training and 100 videos for testing. It is collected from
a static camera and a clean white background. The iPER
dataset contains 206 videos with roughly 1100 frames each.
There are 164 videos for training and 42 videos for testing
purposes. Different focal lengths and genders are included
to capture various poses and views in some indoor or natural
backgrounds.

Evaluation metrics. To evaluate structural similarity,
the SSIM [44] index is used to achieve this goal by apply-
ing covariance and mean. The PSNR computes the power
of maximum value and its mean squared error. The L1 dis-
tance represents the pixel-wise fidelity. We also employ two
supervised perceptual metrics including Fréchet Inception
Distance (FID) [11] and Learned Perceptual Image Patch
Similarity (LPIPS) [50]. The FID is used to measure the
distribution disparity between the generated images and the
training images by computing the perceptual distances. The
LPIPS is targeted on evaluating the Wasserstein-2 distance

between the distributions of the generated samples and real
samples. To measure the temporal coherence, we utilize
Fréchet Video Distance (FVD) [41] to extract features on
time and feature space by a pre-trained I3D [3] network. It
considers a distribution over the entire video, thereby avoid-
ing the drawbacks of frame-level metrics. The term “FVD-
Train128f” denotes the protocol of computing the FVD on
randomly selected consecutive 128 frames for a sequence
on training set and generated images with 50 iterations, like-
wise for “FVD-Test128f” on testing set.

Training strategy. We implement the proposed method
with the public framework PyTorch. We adopt the Adam
[17] optimizer with momentum β1 = 0.5 and β2 = 0.999 to
train our model for 50, 000 iterations in total. The learning
rate is set to 10−4. To keep the original aspect ratio of the
images, we resize the video frames to 256× 256 by thumb-
nail approach. The negative slope of LeakyReLU [32] is
set to 0.2. The weighting hyperparameters λadv , Ltemp,
λ1, λper, Lgram, and λcx are set to 5, 5, 2, 500, 0.5, and
0.1. All models are trained and tested on a server with four
NVIDIA GeForce RTX 2080 Ti GPUs with 11GB memory
for each.

4.2. Comparison with SOTAs

To demonstrate the superiority of the proposed model,
we compare our model with several state-of-the-art ap-
proaches including GFLA [35], Impersonator++ [25],
DPTN [48], and NTED [34].

Quantitative Comparison. As shown in Table 1, our
model achieves the best results on most evaluation met-
rics. The large margin of enhancement on FVD score in-
dicates the best performance of our method in terms of
spatio-temporal consistency. It represents the merits of
the proposed bidirectionally deformable motion modula-
tion in modulating long-range motion sequences with min-
imum discontinuity. Our model can achieve the best results
on those image-based perceptual measuring metrics in the
challenging FashionVideo dataset. For some images with
natural backgrounds like those in iPER dataset, our model
is also able to get highly competitive performance. It quan-
tifies that our model has a better style transfer and video
synthesis ability against current methods.

Qualitative Comparison. Apart from quantitative com-
parison, we also conduct a comprehensive qualitative mea-
surement to compare the perceptually visual quality with

6
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Figure 5. Qualitative comparisons with the state-of-the-art methods on some transferred results conditioned on some noisy poses. Noted
that the input poses are evenly sampled from a random video clip. Please zoom in for more details.

Models SSIM↑ PSNR↑ L1↓ FID↓ LPIPS↓ FVD-Train128f↓ FVD-Test128f↓
Deformable Motion Modulation

w/o DMM 0.892 21.802 0.0435 16.636 0.0935 200.363±2.992 267.476±7.093
w/o DCN 0.916 23.849 0.0317 14.358 0.0484 187.390±2.617 167.529±7.566

w/o Style weight 0.914 23.483 0.0330 14.497 0.0513 176.107±2.745 161.549±7.245
w/o Feature concat 0.911 23.529 0.0338 14.933 0.0523 199.483±2.224 172.651±8.439
w/o Motion mask 0.912 23.492 0.0343 14.554 0.0519 191.984±2.336 176.882±7.004

Bidirectional Propagation
w/o Forward propagation 0.914 23.715 0.0327 15.794 0.0510 208.354±2.833 188.869±9.678

w/o Backward propagation 0.908 23.179 0.0349 14.345 0.0538 171.649±2.289 156.469±6.671
w/o Recurrent structural flow 0.910 23.440 0.0337 15.951 0.0527 202.555±2.712 199.854±7.192

Ours 0.918 24.071 0.0302 14.083 0.0478 168.275±2.564 148.253±6.781

Table 2. Quantitative comparisons of ablation study on the Fash-
ionVideo benchmark. The best scores are highlighted in bold for-
mat.

the state-of-the-arts. We illustrate some generated results
with various poses in Figure 4. We demonstrate a wide va-
riety of viewpoints including front view, left side of body,
right side of body, and back view on the Fashion dataset
(row 1 – row 4). These results can highlight the superiority
of our method from transferring person facial characteris-
tics and complex texture on the garments in different points
of view. To evaluate the synthesis quality in natural back-
ground, we present some generated results on uncommon
gestures in iPER dataset (row 5 – row 8). It shows that
our method can confidently handle arbitrary poses, shapes
and backgrounds with minimum generated artifacts com-
pared with others. It is benefited from the irregular field of
view constructed by the deformable motion offset so that
the multi-scale features can be effectively activated.

As a video-based solution, our method can generate
temporally coherent sequences conditioned on some noisy
poses without pre-processing, as shown in Figure 5. In gen-
eral, the majority of structural guidance is hampered due to
statistical outliers, especially in some occluded scenarios. It
leads to an uncompleted shape and artifacts on the generated

Ground TruthTarget PoseSource Image (a) 
w/o DMM

(b)
w/o Style Weight

(c) w/o 
Forward Propagation

(d) w/o 
Backward Propagation Final

Figure 6. Qualitative analysis of ablation study. The red arrow
indicates the major difference among the variants. Please zoom in
for more details.

images, even though recurrent neural networks are applied
in [24, 25, 35]. With the proposed bidirectional modulation
mechanism, our method can synthesize smooth sequences
with high-fidelity transferring effects.

4.3. Ablation Study

Deformable Motion Modulation. The proposed DMM
is used to synthesize continuous frame sequences by mod-
ulating the 1D style code of source image with an augmen-
tation of spatio-temporal sampling locations. We use a sum
operation to fuse the features extracted from bidirectional
propagation. Compared to the model w/o DMM, our model
achieves superior results for all evaluation metrics in Ta-
ble 2. The lack of style modulation mechanism leads to
failure in style transferring results, in spite of the simple
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Generated ImageTarget PoseSource Image Offset Region
Forward Propagation

Offset Region
Backward Propagation

Motion Mask
Forward Propagation

Motion Mask
Backward Propagation

Figure 7. Demonstration on the region of interest for DMM. We
highlight the activated regions of the estimated motion offsets and
motion mask for both forward and backward propagation. Please
zoom in for more details.

appearance style from the source image, as shown in Fig-
ure 6 (a). Moreover, based on the result of the model w/o
DCN, we observe that there is a positive gain in synthesiz-
ing new content if the receptive field of view during con-
volution is expanded. It can achieve higher FID and LPIPS
scores for image-based perception. The enhancement on
FVD demonstrates the importance of capturing temporal in-
formation from adjacent frames. Furthermore, we compare
the results with the model w/o Style Weight. The modulated
style weight is an important component to perform affine
transformation decomposed from style codes to structural
poses. As depicted in Figure 6 (b), the generated images
are not with style consistence due to lack of a generaliza-
tion on style transfer. It verifies that our proposed DMM
can provide benefits to the fusion of style statistics so that
it can minimize the distribution between real-world images
and the synthesized.

Forward / Backward Propagation. The proposed bidi-
rectional propagation mechanism is used to interpolate the
probability of missing structural guidance from both for-
ward and backward propagation flows in order to enhance
the temporal consistency. The results of evaluation metrics
in Table 2 report that they both have an effective contri-
bution in generating realistic images and maintaining tem-
poral coherence between adjacent frames. In addition, the
qualitative results in Figure 6 (c-d) demonstrate that the for-
ward and backward propagation can preserve more details
on structural shape and appearance details. Both compar-
isons on different measurements verify the efficacy of the
proposed bidirectional propagation flow.

4.4. Visualization of DMM

The proposed DMM uses geometric kernel offset to
transform regular receptive field of view to some irregular
shapes [5, 51]. To investigate the effectiveness of the pro-
posed deformable motion modulation, we illustrate some
visualizations on the DMM module in feature space.

Region of Interest. The region of interest for DMM is to
highlight the global area with effective motion offsets and
motion mask. As demonstrated in Figure 7, we plot the
kernel offsets as a kind of optical flow by following [1]
so that we can observe the activated regions of interest in

Offsets @
FaceTarget PoseSource Image

Offsets @
Upper Body

Offsets @
Hands

Offsets @
Lower Body

Offsets @
Background

Figure 8. Demonstration on the motion offset applied on the acti-
vated units for DMM. The green points and red points represents
the activation units for the corresponding augmented sampling lo-
cations. Please zoom in for more details.

each propagation branch. The visualizations for the mo-
tion mask also highlight the activated magnitude along with
the motion offsets. It is reasonable that the motion offsets
and masks are not aligned for both forward and backward
branches because they are designed to capture the temporal
information in two different sequences. Based on the global
shape on the offset regions and masks in both forward and
backward propagation, we can clearly point out the human
body shape with a predictable movement. The regions with
more semantic information are with higher density. The ac-
tivated regions provide geometric guidance for the network
to modulate the style code extracted from the source image.

Activated Unit. The success of the proposed DMM re-
lies on the augmentation of spatio-temporal sampling loca-
tions. We visualize the behavior of the deformable filters
in Figure 8. The activation units are highlighted with green
points and red points for the corresponding augmented sam-
pling locations. It is obvious that the proposed semantics
on the sampling locations are dependent on the activated
units. It is certified that the proposed DMM module can
produce a dynamic receptive field of view to keep track of
interested semantics so that it can synthesize a sequence of
high-quality and smooth video frames.

5. Conclusion
In this paper, we present a novel end-to-end framework

for video-based human pose transfer. The proposed De-
formable Motion Modulation (DMM) employs geometric
kernel offsets with adaptive weight modulation to perform
spatio-temporal alignment and style transfer concurrently.
The bidirectional propagation is employed to strengthen the
temporal coherence. Comprehensive experimental results
show that our method can effectively deal with the problems
of spatial misalignment for complex structural patterns and
noisy poses. Our framework has an excellent synthesis abil-
ity in human pose video generation and has great research
potential for industrial development.
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