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HSGAN: Hyperspectral Reconstruction From RGB
Images With Generative Adversarial Network

Yuzhi Zhao , Graduate Student Member, IEEE, Lai-Man Po , Senior Member, IEEE,
Tingyu Lin , Qiong Yan, Wei Liu, and Pengfei Xian

Abstract— Hyperspectral (HS) reconstruction from RGB
images denotes the recovery of whole-scene HS information,
which has attracted much attention recently. State-of-the-art
approaches often adopt convolutional neural networks to learn
the mapping for HS reconstruction from RGB images. However,
they often do not achieve high HS reconstruction performance
across different scenes consistently. In addition, their perfor-
mance in recovering HS images from clean and real-world
noisy RGB images is not consistent. To improve the HS recon-
struction accuracy and robustness across different scenes and
from different input images, we present an effective HSGAN
framework with a two-stage adversarial training strategy. The
generator is a four-level top-down architecture that extracts
and combines features on multiple scales. To generalize well to
real-world noisy images, we further propose a spatial–spectral
attention block (SSAB) to learn both spatial-wise and channel-
wise relations. We conduct the HS reconstruction experiments
from both clean and real-world noisy RGB images on five
well-known HS datasets. The results demonstrate that HSGAN
achieves superior performance to existing methods. Please visit
https://github.com/zhaoyuzhi/HSGAN to try our codes.

Index Terms— Generative adversarial network (GAN), hyper-
spectral (HS) reconstruction, spatial–spectral attention.

I. INTRODUCTION

HYPERSPECTRAL (HS) imaging technology analyzes
a wide spectrum for each pixel in the image of a

scene instead of only primary colors (red, green, and blue).
Normally, HS images are sampled at more than 20 equally
distributed wavelengths. The spectral range in HS images
can extend beyond the human visible range (e.g., ultraviolet
and infrared). Since HS images contain much richer informa-
tion than RGB images, there are many specific applications,
e.g., remote sensing [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
food processing [11], anomaly detection [12], and medical
imaging [13], [14]. However, applying common HS imagers
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Fig. 1. Illustration of RGB and HS images. The RGB images have three
channels: red (long-wavelength lights), green (medium-wavelength lights), and
blue (short-wavelength lights), which are what human eyes can perceive. The
HS images are in the form of a hypercube including n-dimensional image
data. “CRF” denotes the camera response function [28], which relates image
irradiance to image brightness.

(e.g., HS spectrometers [15], [16], [17], [18], [19] and HS
snapshot imaging [20], [21], [22], [23], [24], [25], [26], [27])
often encounters two challenges. First, HS spectrometers take
a long operation time due to spatial-wise or spectral-wise
scanning, which is not suitable for real-time applications and
moving scenes. Second, HS snapshot imaging achieves video
rates but reduces spatial and spectral resolutions. In addition,
those devices are of high complexity and expensive in terms of
consumer usage. Therefore, acquiring high-quality HS images
at low cost in complex scenes becomes in high demand.
Compared with HS imagers, RGB cameras are well developed
and more robust to different scenes, i.e., RGB images are much
easier to obtain than HS images. Based on this observation,
many efforts have been made to recover spectra from RGB
images recently.

HS reconstruction from RGB images can be formulated as
learning a mapping function F , as shown in Fig. 1. It is
challenging since the information of RGB images is much
less than the HS spectrum. The algorithms need to learn to
fill in the information of missing spectral bands from only
three channels, which makes the task ill-posed. In addition,
RGB images captured in real-world scenes are often noisy.
The practical algorithms should have good denoising ability.
Recent approaches to estimate F typically fall into one of the
two learning-based categories.

1) Sparse-coding-based approaches [29], [30], [31].
2) Convolutional-neural-network-based approaches (a.k.a.

CNN-based approaches) [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42].
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Fig. 2. Comparison of three network architectures used in HS reconstruction
from RGB images. (a) Sequential convolutions with residual connections [32],
[33], [34], [35], [36], [53]. (b) U-Net [37], [38], [50], [52]. (c) Hierarchical
architecture. (d) Descriptions of layers, blocks and lines [39], [40], and
the proposed HSGAN. We simplify the blocks in those papers to highlight
architectures.

Among them, CNN-based approaches often achieve better
performance, where the mapping F is formulated by a CNN.
It is trained by maximizing a posteriori of HS images condi-
tioned on RGB images. Though they could produce good HS
images without any manual control or extra hardware support,
there still exist the following issues.

1) Poor generalization ability across different RGB images
and scenes (e.g., in different HS datasets).

2) Inconsistent performance on clean RGB images and
real-world noisy RGB images.

To address the issues, we propose an HSGAN framework.
To improve the generalization quality, we adopt the adversarial
training [43] in addition to the traditional regression loss
functions such as L1 and L2 loss. It improves the performance
while does not introduce additional computational cost at
the inference. We adopt two training stages to stabilize the
adversarial training. For the HSGAN generator, we design
a four-level top-down hierarchical architecture, as shown in
Fig. 2 (c). It has three main advantages over previous architec-
tures [e.g., Fig. 2(a) and (b)]: 1) the top level greatly enlarges
the perceptive field, which models long-range relations for far
pixels in the image; 2) the levels from top to bottom extract
features from global to local regions; and 3) the connections
between levels are lossless operations. To further improve the
feature representation ability, we propose a spatial–spectral
attention block (SSAB) at every level of the generator. It
considers both the spatial importance of every pixel and
the interchannel relations of feature maps. Since the feature
representation ability is improved and long-range relations are
modeled [44], HSGAN has a stronger denoising ability when
receiving noisy inputs.

To demonstrate the good generalization ability and HS
reconstruction accuracy achieved by HSGAN, we conduct
experiments on five well-known HS datasets: NUS [45],
Harvard [46], ICVL [30], CAVE [47], and ARAD [48]. Each
of them includes paired clean RGB and HS images captured
by different types of cameras (also with different CRFs).

To evaluate the generalization ability, we apply different
CRFs to the same dataset. To evaluate the HS reconstruction
ability from real-world RGB images, we additionally add
realistic noises and JPEG compression [48], [49] to the clean
RGB images. Extensive experiments show that the proposed
HSGAN achieves higher accuracy and consistent perfor-
mance across different application cases than the state-of-
the-art methods [32], [33], [34], [35], [38], [39], [40], [50],
[51], [52], [53].

We summarize the main contributions of this article below.
1) We propose an HSGAN with a two-stage adversarial

training scheme to improve HS reconstruction accuracy.
2) We propose a top-down four-level generator architecture

to extract and combine features in different scales.
3) We propose a SSAB to further enhance feature

representation.

II. RELATED WORK

A. HS Image Acquisition

Early HS imaging devices [15], [17], [19], [54], [55] record
the spatial and spectral information based on scanning. It
can be divided into spatial scanning (reading images over
time) and spectral scanning (acquiring images at different
wavelengths). Due to hardware design, the acquisition of
high-resolution HS images is extremely slow. To accelerate
the HS acquisition, snapshot HS imaging devices [20], [21],
[22], [23], [24], [25], [26], [27] capture HS images during a
single integration time of a detector array. It is normally a
two-stage imaging process including spectral data collection
and 3-D HS cube reconstruction. However, they still rely on
labor-intensive post-processing. More recently, coded aperture
snapshot spectral imagers (CASSIs) [56], [57], [58], [59]
take advantage of compressive sensing theory, which capture
essential information with a reduced amount of measurements.

B. HS Reconstruction From RGB Images

Considering the high cost of HS imaging devices and the
long operation time, HS reconstruction from RGB images has
attracted more research and industrial interest recently. There
are many learning-based approaches have been developed,
e.g., correlation regression [60], radial basis function network
[45], principal component analysis [61], [62], manifold-based
mapping [63], Gaussian process [64], and sparse coding [30],
[59], [65], [66]. Recently, CNN-based methods have been
more common since they learn the mapping based on rich
data prior from large datasets. They can be briefly categorized
into three classes according to network architectures, as shown
in Fig. 2: 1) sequential convolutions with residual connections
[32], [33], [34], [35], [36], [53], [67]; 2) U-Net [37], [38],
[50], [51], [52]; and 3) hierarchical architecture [39], [40].

For instance, Choi et al. [68] built an implicit HS prior
based on CASSI reconstruction by the latent representation
of a learned autoencoder. It was enhanced by spatial–spectral
prior [69], [70] and self-attention [39], [71]. In recent NTIRE
2020 contest [48], Li et al. [53] proposed an adaptive weighted
attention network (AWAN) with eight compact dual residual
attention blocks (DRABs). DRAB consists of two convolution
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paths that represent long and short skip connections simul-
taneously. Zhao et al. [40] proposed a hieratical regression
network (HRNet) with residual dense block [72] and global
block [73]. It achieved better performance when recovering HS
images from real-world noisy RGB images but not produced
comparable results on clean RGB images. Though they applied
self-ensemble or model-ensemble strategies, they are still hard
to obtain consistent results on different types of input images.

C. Generative Adversarial Network

GAN was firstly proposed by Goodfellow et al. [43].
It has been utilized in many low-level vision areas like
deblurring [74] and colorization [75] as an auxiliary loss
to improve the reconstruction accuracy and sharpness. The
original training scheme of generative adversarial network
(GAN) often leads to loss fluctuation and mode collapse.
To address these issues, researchers have developed new loss
functions (e.g., LSGAN [76], WGAN [77], WGAN-GP [78]),
effective training techniques (e.g., two time-scale update rule
(TTUR) [79]), and normalization (e.g., spectral normalization
[80]). For the HSGAN, we adopt the WGAN training scheme
with spectral normalization on the discriminator.

III. PROBLEM FORMULATION

Given an RGB image x = [r, g, b], HS reconstruction
algorithms learn a mapping function F to obtain an HS esti-
mation ŝ = [ŝ1, ŝ2, ŝ3, . . . , ŝn], where n denotes the maximum
index of spectral bands and every specific ŝk records the
information of a narrow band of the whole spectrum. For
CNN-based algorithms [32], [33], [34], [35], [36], [37], [38],
[39], [40], [50], [52], [53], the HS reconstruction is formulated
as maximizing a posteriori of HS images conditioned on RGB
images

2∗
= arg max

2

p(s|x, 2) (1)

where x and s are input RGB images and ground-truth HS
images, respectively. 2∗ is the theoretically optimal parame-
ters of the CNN, which serves as the mapping function F .

We include five datasets in the training and evaluation: NUS
[45], Harvard [46], ICVL [30], CAVE [47], and ARAD [48].
We name the HS reconstruction from original RGB images in
the datasets as “HS from clean images with non-fixed CRF”
since the CRFs [28] are normally unknown (expect ARAD).

To demonstrate that the proposed HSGAN can fit different
CRFs, we apply a real known CRF extracted from ARAD [48]
to CAVE [47] and ICVL [30] since HS images of these three
datasets have the same bandwidths, the number of bands, and
spectrum ranges. We name the HS reconstruction from these
generated RGB images as “HS from clean images with fixed
CRF.” Since the CRF from ARAD [48] is linear, the data
synthesis can be formulated as follows:

x = s × CRF (2)

where CRF is a n × 3 matrix [48] and s are ground-truth
HS images. x is the generated three-channel RGB image. The
colors of the generated x might be different from original

Fig. 3. Illustration of three settings of HS reconstruction. (a) HS from clean
images with non-fixed CRF. (b) HS from clean images with fixed CRF. (c) HS
from real-world images with fixed CRF. (d) Corresponding HS images. The
samples are “beads,” “feathers,” and “chart_and_stuffed_toy” in the CAVE
dataset. There are 31 channels of HS images and we only show five channels
for visualization.

RGB images in the datasets, e.g., color tones of images in
Fig. 3(a) and (b) are different since the CRFs of CAVE [47]
and ARAD [48] datasets might be different, though they share
the same HS spectrum.

In addition, there often exist noises in real-world captured
RGB images. In this situation, the algorithms need to learn HS
reconstruction and denoising simultaneously. We name such
setting as “HS from real-world images with fixed CRF.” To
model the real-world RGB images, there are three sequential
steps based on the image signal processor pipeline [48].

1) We apply a real CRF [48] to HS data s to obtain an
RGB image x [please refer to (2)].

2) Since real noises emerge on RAW data [49], we convert
RGB image x to RAW space by mosaicking operation
and then add noises. The noises include shot noise and
read noise, which aligns with the setting of [48]. The
shot noise is firstly added and then the read noise is
added. Next, we convert the noisy RAW back to RGB
space by demosaicking operation.

3) We save the RGB image to JPEG format.
The aforementioned steps can be represented as follows:

x = JPEG(Demos(Mos(s × C RF) + n)) (3)

where Mos(∗) and Demos(∗) are mosaicking and demosaick-
ing operations, respectively. The additive noise n includes
shot noise and read noise, where the former follows Poisson
distribution (signal-related) and the latter follows Gaussian
distribution (signal-independent). The JPEG operation mod-
els JPEG compression artifacts for demosaicked images. In
conclusion, (3) results in a noisy RGB image x from an
HS images s. Some generated real-world noisy samples are
illustrated in Fig. 3(c).

IV. METHODOLOGY

A. HSGAN Architecture

HSGAN consists of a generator F and a discriminator D,
as shown in Figs. 4 and 5, respectively. The generator is a
top-down hierarchical architecture that can be divided into
four levels, as shown in Fig. 4(a). The inputs for levels 1–3
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Fig. 4. Illustration of (a) HSGAN generator F , where the input is an RGB image and the output is multichannel HS images and (b) SSAB detailed structure.

Fig. 5. Illustration of (a) HSGAN discriminator D, where HS images are input and the output is a one-channel embedding and (b) training pipeline of
HSGAN.

are obtained by applying PixelUnShuffle [81] to the input
RGB image. The features from the previous levels are passed
to the next levels by PixelShuffle (reverse operation of Pix-
elUnShuffle) and concatenation, which makes the next levels
have distilled information with a larger perceptive field. The
(SSABs, which will be discussed in Section IV-B) are used
at every level to improve the feature representation. The 1 ×

1 convolutional layers are further used to refine the channel
information in the first three levels to refine the channel
information before passing the features to the next levels. We
conclude five advantages for the architecture.

1) Multilevel (multiscale) feature extraction and interlevel
relation modeling.

2) Improved feature representation ability by SSABs.
3) Refined channel information at each shallower level by

a 1 × 1 convolutional layer.
4) Enlarged perceptive field by PixelUnShuffle with limited

computational consumption.
5) Lossless downsampling and upsampling by PixelUn-

Shuffle and PixelShuffle.
The discriminator is PatchGAN-styled [82], i.e., the output

is a one-channel embedding, as shown in Fig. 5(a). We use
convolutional layers and SSABs alternately. The resolution of
output embedding is 30 × 30 when the input has a size of
256 × 256. At training, the discriminator is used to compute
adversarial loss and the relationship between the generator and
discriminator is shown in Fig. 5 (b).

B. Spatial–Spectral Attention Block

HS reconstruction from RGB images aims to interpo-
late missing compact spectral information from sparse three

visible-color channels, which is highly ill-posed. Therefore,
good generalization capability and reconstruction accuracy
highly rely on the feature representation ability of CNNs.
To improve it, we have two assumptions: 1) different pixels
have different significance, e.g., some pixels might have very
small values or noisy and 2) different channels might provide
different amount of information, e.g., red channel might have
less relations to far spectral bands. Built upon them, we pro-
pose a SSAB by emphasizing both spatial correlations and
interchannel relations, whose structure is shown in Fig. 4(b).

It contains three sequential operations, i.e., feature distilla-
tion, spatial attention, and spectral attention. First, we use five
densely connected convolutional layers [67], [72] for feature
distillation. It provides refined features for the following
spatial and spectral attention operations. Second, we perform
spatial attention to reweight the importance of every pixel. It
is implemented by the element-wise product of two branches
from the same layer. The first branch is activated by Sigmoid,
which serves as the weighting feature since its range is in
[0,1]. Third, we perform spectral attention to learn interchan-
nel correlations. The significance of channels is computed
by a global average pooling layer with three MLP layers
as in [73].

C. Training Strategy and Loss Functions

We define two training stages for HSGAN generator F ,
where the first stage learns good initial weights for it, and
we perform adversarial training in the second stage. With this
training strategy, adversarial training becomes more stable and
effective.
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TABLE I
SUMMARIZATION OF DIFFERENT DATASETS USED IN THE EXPERIMENT

In the first stage, we adopt L1 loss, which measures the
disparity between generated HS images and ground truth at
each pixel. It is defined as follows:

L1 = E[||ŝ − s||1] =

n∑
k=1

E[||ŝk − sk ||1] (4)

where ŝ and s are the generated and ground-truth HS images,
respectively. The sk is kth narrow band of the whole spectrum.

In the second stage, we perform GAN training, i.e., the
HSGAN discriminator and generator are trained alternatively.
We adopt WGAN loss [77] to promote the decrease of
Wasserstein distance between data distributions of generated
HS images and ground truth. Also, we attach spectral normal-
ization [80] to each convolutional layer of the discriminator to
ensure that HSGAN meets 1-Lipschitz continuity. The GAN
loss in the discriminator D training step is defined as follows:

L D = E[D(ŝ)] − E[D(s)] (5)

where D(∗) is the HSGAN discriminator, which outputs an
embedding. The operator E(∗) computes the average across all
pixels of the embedding and outputs a scalar. The weights of
the generator are not updated during the discriminator training
step. Then, the GAN loss in the generator F training step is
defined as follows:

LG = −E[D(ŝ)] (6)

where ŝ = F(x). D is used to obtain the embedding for
computing generator loss, whose weights are fixed. In addition,
we use L1 loss for training, and the full loss function of the
HSGAN generator is given by

Loss = λ1L1 + λG LG (7)

where λ1 and λG are trade-off parameters.

D. Optimization Details

For all datasets and settings, we extract 256 × 256 patches
from input RGB images and ground-truth HS images, which
are then normalized into range of [0,1]. The parameters of
HSGAN are initialized with Xavier [83]. HSGAN is trained
for 200 000 iterations, where 50 000 iterations are for the
first stage and the remaining 150 000 iterations are for the
second stage. The learning rate for the HSGAN generator is
initially set to 1 × 10−4 and halved every 50 000 iterations. The
learning rate for the HSGAN discriminator is the same as the
generator. The trade-off parameters λ1 and λG are empirically
set to 10 and 1, respectively. We use Adam optimizer [84] with
parameter β1 = 0.5, β2 = 0.999. The batch size is fixed to 1.

Fig. 6. Illustration of RGB images sampled from five datasets with HS images
for the first RGB image. Only five channels of HS images are illustrated for
visualization; the actual number of channels are larger than five.

We implement the proposed HSGAN with PyTorch 1.0.0 and
train it on a single NVIDIA TITAN Xp GPU.

V. EXPERIMENT

A. Experiment Settings

1) Datasets: We use five well-known datasets (NUS [45],
Harvard [46], ICVL [30], CAVE [47], and ARAD [48]). They
include different spectrum ranges (Harvard and other datasets),
bandwidth (NUS and other datasets), and the number of bands
(NUS and other datasets), as shown in Table I. We show
some samples selected from the datasets in Fig. 6, which
vary in scenes (e.g., park, lab, university, and field) and light
conditions (e.g., natural light and indoor light). We randomly
divide the number of training and validation images according
to the 14:1 ratio. We introduce the details for them as follows.

1) NUS [45]: It contains 66 HS images with their illumi-
nations (where four images are for validation). Different
color temperatures were considered in capturing process.
The raw data ranges from 400 to 1000 nm and has
396 bands overall. We extract a downsampled version,
where the bands are between 400 and 700 nm. The RGB
images were mapped by the Canon 1-D Mark III CRF.
However, in our experiment, we assume the function is
blind so that the reconstruction is non-fixed.

2) Harvard [46]: It includes overall 50 HS images rang-
ing from 420 to 720 nm (where four images are for
validation). They were taken by a commercial HS cam-
era (Nuance FX, CRI Inc.) in daylight illumination.
The camera is equipped with an apochromatic lens
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(CoastalOpt UV-VIS-IR 60 mm Apo Macro, Jenoptik
Optical Systems, Inc.) It includes both indoor and out-
door images with a variety of objects and materials. All
HS images were rendered into RGB format by a specific
mapping function.

3) ICVL [30]: It includes 201 HS images over 519 spectral
bands (where 11 images are for validation). The images
were taken by a line scanner (Specim PS Kappa DX4 HS
camera). The authors downsampled the original data to
31 bands from 400 to 700 nm. It includes many different
indoor and outdoor scenes. The corresponding RGB
images were mapped by the CIE 1964 color matching
functions [85].

4) CAVE [47]: It contains 32 HS images (where two images
are for validation). Each HS image ranges from 400 to
700 nm with 10 nm increments. The photos were cap-
tured by a cooled CCD camera (Apogee Alta U260).
They were taken in the laboratory including textiles,
skin, drinks, paints, vegetables, etc.

5) ARAD [48]: It contains 510 HS images (where ten
images are for validation) that are much larger than
previous datasets. They were collected with a Specim
IQ mobile HS camera, which is a push–broom imaging
system. There are 204 spectral bands in the 400–1000
nm range, but they are downsampled to 400–700 nm to
fit previous settings.

2) HS Reconstruction Settings: There are three settings:
1) HS reconstruction from clean images with non-fixed CRF;
2) HS reconstruction from clean images with fixed CRF from
ARAD [48]; and 3) HS reconstruction from real-world images
with fixed CRF from ARAD [48]) in the experiment (please
refer to Section III for more details). Note that the RGB images
in different settings share the same ground-truth HS images.

3) Baselines: We include 11 most recent approaches for
comparisons, including encoder–decoder architecture [38],
[50], [51], [52], sequential convolution architecture [32], [33],
[34], [35], [53], and hieratical architecture [39], [40]. We
follow original papers to define their hyperparameters. At
training, the baselines share the same data with HSGAN. For
evaluation, we generate a full HS spectrum patch-by-patch,
where the patch size equals 256 × 256 for all baselines and
HSGAN.

4) Evaluation Metrics: There are four metrics utilized for
the evaluation of HS reconstruction algorithms. We utilize
mean relative absolute error (MRAE) and root mean square
error (RMSE) to measure the pixel-wise disparity between
the generated and ground truth. We also adopt spectral angle
mapper (SAM) [86] to measure spectral fidelity. We use back
projection MRAE (BPAE) to compute differences between
recovered RGB images (obtained by multiplying generated
HS images and CRF) and input RGB images. Note that,
BPAE is only available if CRF is known (i.e., only for
evaluating HS from clean images with fixed CRF setting). All
the aforementioned metrics are defined as follows:

MRAE =
1
n

n∑
k=1

| ŝk − sk |

sk
(8)

TABLE II
HS RECONSTRUCTION FROM CLEAN RGB IMAGES WITH NON-FIXED

CRF COMPARISONS ON ARAD VALIDATION SET. THE RED, BLUE,
GREEN COLORS DENOTE THE BEST, THE SECOND BEST, AND THE

THIRD BEST PERFORMANCE, RESPECTIVELY

RMSE =

√√√√1
n

n∑
k=1

(ŝk − sk)2 (9)

SAM = cos−1
(

ŝ · s
||ŝ|| · ||s||

)
(10)

BPAE =
1
n

| ŝ × CRF−x |

x
(11)

where ŝk and sk are the kth channel of the generated HS
images ŝ and ground-truth HS images s, respectively.

B. Evaluation of HS Reconstruction From RGB Images With
Non-Fixed CRF

In this section, we evaluate the performance of HSGAN and
11 baselines [32], [33], [34], [35], [38], [39], [40], [50], [51],
[52], [53] on original data from five datasets [30], [45], [46],
[47], [48].

The quantitative results are concluded in Tables II and III.
The HSGAN obtains the best performance on the Harvard,
ICVL, CAVE, and ARAD datasets and the top-3 performance
on the NUS dataset. It demonstrates that the proposed HSGAN
reconstructs the HS spectrum with higher fidelity than other
methods. Also, it generalizes well to different HS datasets,
i.e., different HS imaging devices or CRFs. However, other
methods cannot obtain consistently good results on all the
datasets, e.g., RSCNN obtains the best MRAE on the Har-
vard dataset, but its performance is not good enough on other
datasets. Though the state-of-the-art HRNet [40] achieves the
best results on the NUS dataset, it does not perform well on
both Harvard and ICVL datasets. The proposed HSGAN has
better results in the most of datasets and metrics.

We illustrate HS reconstruction results on the ICVL dataset
in Fig. 7. In the figure, the error map of a spectral band
(i.e., error map ek) for a specific method is computed as
ek = |ŝk − sk |, where ek , ŝk and sk are the kth error map,
kth channel of the generated and ground-truth HS images,
respectively. Compared with other methods, HSGAN yields
better results since the error maps on different spectral chan-
nels approach 0 (e.g., if the color more approaches blue, the
value approaches 0, as shown in the color bar of Fig. 7).
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TABLE III
HS RECONSTRUCTION FROM CLEAN RGB IMAGES WITH NON-FIXED CRF COMPARISONS ON FOUR VALIDATION SETS. THE RED, BLUE, GREEN

COLORS DENOTE THE BEST, THE SECOND BEST, AND THE THIRD BEST PERFORMANCE, RESPECTIVELY

Fig. 7. Illustration of error maps of HS reconstruction from clean RGB images with non-fixed CRF on ICVL validation set. There are three scenes
(“bguCAMP_0514-1718,” “lst_0408-1004,” and “omer_0331-1118”) and we select different bandwidths for them. The left column includes one channel from
the ground-truth spectrum. The other columns include the error maps of 11 baselines and HSGAN. Please zoomed-in view for a better view.

The top-ranked methods LSS, AWAN, and HRNet produce
more artifacts on the shown samples than HSGAN. It demon-
strates that HSGAN architecture performs better than others
in terms of HS reconstruction quality. Similarly, we illustrate
the performance of five top-ranked methods on the other four
datasets in Fig. 8. HSGAN obtains better results than other
methods on the shown samples. The state-of-the-art methods
AWAN and HRNet produce more noisy results than HSGAN,
e.g., HRNet on “balloons” sample of the CAVE dataset, and
AWAN on “ARAD_HS_0455” sample of the ARAD dataset.
It also proves that HSGAN is general to different datasets.

Also, we draw MRAE curves on randomly chosen points
for the generated HS images from different methods in Fig. 9,

where a line with a lower position denotes the corresponding
method is more accurate. HSGAN (red lines) obtains lower
MRAE values on most of the sampled points compared with
other top-ranked methods (other color lines). It further proves
that HSGAN has good generalization ability and achieves good
performance on different HS datasets.

C. Evaluation of HS Reconstruction From RGB Images With
Fixed CRF

In this section, we evaluate the performance of HSGAN and
11 baselines [32], [33], [34], [35], [38], [39], [40], [50], [51],
[52], [53] on ICVL, CAVE, and ARAD datasets [30], [47],
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Fig. 8. Illustration of error maps of HS reconstruction from clean RGB images with non-fixed CRF on NUS, Harvard, CAVE, and ARAD datasets, respectively.
Only the five top-ranked methods are shown for each dataset. There are four groups (“Scene06” from the NUS dataset, “imgh1” from the Harvard dataset,
“balloons” from the CAVE dataset, and “ARAD_HS_0455” from the ARAD dataset) and we select different bandwidths and ranges for them. In each group,
the left column includes one channel from the ground-truth spectrum. The other columns include the results of five baselines and HSGAN.

Fig. 9. Illustration of MRAE curves on a single point of 11 baselines and HSGAN. In the first row, the RGB images are inputs of the methods, where two
sample points are highlighted. The following two rows include the MRAE values at each wavelength. Only the top-performed five methods of each dataset
are illustrated, which is the same as Fig. 8.

[48] from clean or real-world RGB images with fixed CRF.
The synthetic clean or real-world RGB images are generated
using the CRF in the ARAD dataset [48] and (2) and (3).

The quantitative analysis is included in Tables IV and V.
HSGAN obtains the best HS reconstruction accuracy on ICVL,
CAVE, and ARAD datasets from both clean and real-world
RGB images with fixed CRF. It demonstrates that HSGAN
architecture generalizes well to real-world noises. HSGAN
generator extracts features at four scales from compact to
fine. It effectively expands the perceptive field that is bene-
ficial to image denoising. Compared with existing methods,
HSGAN adopts SSAB, which models both spatial and spec-
tral attention. By concatenating SSABs, HSGAN obtains

superior feature representation ability, which is helpful for
HS reconstruction and image denoising. In addition, a tone
mapping 1 × 1 convolution is used to refine the features at
levels 1–3 before feeding into the next level. The channel
information is better reweighted, which could be valuable
for spectral interpolation. Therefore, HSGAN achieves better
results than state-of-the-art methods.

We illustrate error maps of HS reconstruction on the
ICVL validation set with clean and real-world settings in
Fig. 10. The error maps of HS reconstruction results of
three bands (450, 550, and 650 nm) and from clean or
real-world RGB images are illustrated. It is clear that there
are lower errors in HSGAN’s results, which shows that
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TABLE IV
HS RECONSTRUCTION FROM RGB IMAGES WITH FIXED CRF FROM ARAD DATASET COMPARISONS ON ICVL AND CAVE VALIDATION SETS. THE

“CLEAN” DENOTES THE RGB IMAGES ARE CLEAN [OBTAINED BY (2)] AND “REAL-WORLD” REPRESENTS THEY ARE NOISY [OBTAINED
BY (3)]. THE RED, BLUE, GREEN COLORS DENOTE THE BEST, THE SECOND BEST, AND THE THIRD BEST PERFORMANCE, RESPECTIVELY

Fig. 10. Illustration of error maps of HS reconstruction from clean and real-world RGB images with fixed CRF on “lst_0408-1004” sample with three bands
from the ICVL validation set. The columns include the error maps of 11 baselines and HSGAN from left to right. The 1–3 rows and the 4–6 rows include
the error maps of HS reconstruction from clean and real-world RGB images with fixed CRF with 450, 550, and 650 nm bands, respectively. The last row
represents the input RGB images of three settings and ground-truth spectral bands. Please zoomed-in view for a better view.

HSGAN produces more accurate HS bands under these
settings.

We also illustrate error maps of reconstructed RGB images
for the “HS reconstruction from clean images with fixed CRF”
setting in Fig. 11. The images are obtained by post-processing
generated HS images with the known CRF and (2). In the
figure, the error map of a generated RGB image (i.e., ergb)
for a specific method is the cumulative errors of R, G, and B
channels, which is computed as follows:

ergb = |r̂−r | + |ĝ−g| + |b̂−b| (12)

where ergb is the error map. The r̂ , ĝ, b̂, r , g, and b are
the R, G, B channel of the generated and ground-truth RGB

input images, respectively. It is clear that HSGAN produces
relatively cleaner reconstruction results than other methods.

In conclusion, the proposed HSGAN obtains better HS
reconstruction results on five datasets (NUS, Harvard, ICVL,
CAVE, and ARAD) with three different settings (HS recon-
struction from clean images with non-fixed CRF, from clean
images with fixed CRF, and from real-world images with
fixed CRF). The experiments demonstrate HSGAN has better
generalization ability across different RGB images and scenes
(i.e., consistent results on different datasets and clean or
noisy images) than existing methods. They also demonstrate
HSGAN obtains superior HS reconstruction accuracy than
existing methods.
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TABLE V
HS RECONSTRUCTION FROM REAL-WORLD RGB IMAGES WITH FIXED

CRF FROM ARAD DATASET COMPARISONS. SINCE CRF IS FROM
ARAD DATASET, “ARAD (CLEAN)” IS THE SAME AS “ARAD” OF

TABLE II. THE RED, BLUE, GREEN COLORS DENOTE THE BEST,
THE SECOND BEST, AND THE THIRD BEST

PERFORMANCE, RESPECTIVELY

D. Ablation Study

We perform the ablation study on adversarial training
scheme and network architectures (including the number of
blocks and the components of SSAB). There are overall
13 settings.

1) w/o Adversarial Loss: No adversarial training is used,
i.e., only L1 loss is used for training HSGAN.

2) w/o Feature Distill: Feature distillation (step 1) in the
SSAB is replaced by convolutional layers with the
same numbers for fairness.

3) w/o Spatial attn: Spatial attention (step 2) in the
SSAB is replaced by convolutional layers with the
same numbers.

4) w/o Spectral attn: Spectral attention (step 3) in the
SSAB is replaced by convolutional layers with the
same numbers.

5) w/o SSAB: The full SSAB is replaced by convolu-
tional layers with the same numbers.

6) w/o 1 × 1 Conv: No use of 1 × 1 convolutional layer
at the end of each level of HSGAN generator;

7) Kernel Size = 5 × 5: The kernel sizes for all convo-
lutional layers and blocks are changed to 5 × 5.

8) w/o PixelUnShuffle: PixelUnShuffle and PixelShuffle
are replaced by bicubic sampling.

9)–13) SSAB [n1 n2 n3 n4]: The number of SSABs in
levels 1–4 are changed to n1, n2, n3, and n4,
respectively. We let [n1 n2 n3 n4] equal to [1234],
[1345], [2245], [2344], and [2335]. Note that, the
number of full HSGAN are [2345].

The experiments are conducted on the ICVL validation set
with three settings. The results are concluded in Table VI.
Compared with the full HSGAN, all ablation study settings
lead to poorer values of metrics. It demonstrates that adversar-
ial loss and all network components are beneficial to better HS
reconstruction quality. In addition, we find that full HSGAN
obtains the best performance across different input settings
(i.e., clean images with non-fixed CRF, clean images with
fixed CRF, and real-world images with fixed CRF) consis-
tently. Therefore, adversarial loss and all network components

Fig. 11. Illustration of the generated RGB images (“RGB” in the figure) and
error maps (“Error Map” in the figure) of HS reconstruction from clean RGB
images with fixed CRF on selected samples on CAVE, ICVL, and ARAD
validation sets. Please zoomed-in view for a better view.

contribute to consistent and high-quality HS reconstruction
results.

For specific settings, setting 1) demonstrates the proposed
adversarial training is beneficial to HS reconstruction qual-
ity across different input data. In addition, we find that
HSGAN is hard to converge when kernel size is changed
to 5 × 5 [setting 7)], e.g., the MRAE becomes “nan.” The
tone mapping 1 × 1 convolutions at the end of each level
[setting 6)] are significant since the channel information is
vital for HS reconstruction. Omitting 1 × 1 convolutions leads
to much higher MRAE, i.e., from 0.1256 to 0.1869 for HS
reconstruction from clean images with non-fixed CRF setting.
PixelUnShuffle sampling [setting 8)] is also helpful since it is
a lossless sampling method compared with bicubic sampling.
The SSAB is also significant since settings 2)–5) show that
SSAB has a much stronger feature extraction ability than
normal convolutions. For settings 9)–13), we observe that the
number of SSABs are closely related to the HS reconstruction
performance. The proposed HSGAN adopts proper number of
SSABs and achieves better results than the other settings.

In conclusion, the proposed adversarial training scheme and
network architectures (including the number of blocks and the
components of SSAB) are all significant for HSGAN.

E. Discussion on SSAB

To further demonstrate the proposed HSGAN with the
SSAB is superior to the state-of-the-art method HRNet [40],
we conduct the following additional experiments.

1) HSGAN SSAB → GB: We replace SSABs by the basic
blocks in HRNet [40], where global attention is com-
puted once at each level and spatial attention is not
considered. The architecture of HSGAN is kept.

2) HSGAN SSAB [2235]: We keep the architecture of
HSGAN but the number of SSABs in levels 1–4 are
changed to 2, 2, 3, and 5, respectively. This setting uses
the same number of blocks in HRNet [40].
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TABLE VI
ABLATION STUDY RESULTS ON ICVL VALIDATION SET. THE TOP-PERFORMED METHOD IS LABELED IN RED

TABLE VII
EXPERIMENT RESULTS ON THE ANALYSIS OF THE SSAB. THE TOP-PERFORMED METHOD IS LABELED IN RED

TABLE VIII
EXPERIMENT RESULTS ON THE ANALYSIS OF THE SSAB ON DOUBLE

NOISE PARAMETERS SETTING. THE TOP-PERFORMED
METHOD IS LABELED IN RED

3) HSGAN SSAB → GB [2235]: We replace SSABs by the
basic blocks in HRNet [40]. Then, we reduce the number
of blocks in levels 1–4 to 2, 2, 3, and 5, respectively.

The experiment results are concluded in Table VII. First,
if replacing SSABs in HSGAN with the basic blocks in
HRNet [i.e., setting 1)], the HS reconstruction accuracy
becomes worse (e.g., obvious increases of MRAE, RMSE,
and SAM values). It demonstrates the proposed SSAB out-
performs the blocks in the HRNet [40] given different inputs
(e.g., noisy/clean RGB images). Second, we use the same
number of blocks as in HRNet [40] (i.e., setting 2). The results
are still inferior to the full HSGAN. It shows that the proper
number of blocks of HSGAN is significant, which matches
the conclusion in Section V-D. We observe that the results of
setting 2) are slightly better than setting 1), e.g., for “HS from
clean images with non-fixed CRF,” the MRAE value of setting
2) is 0.1393 while it is 0.1397 for setting 1). It represents that
the block designs might be more significant for the HSGAN to
obtain higher HS reconstruction accuracy than the number of
blocks. Third, we replace the SSAB and use the same number

TABLE IX
EXPERIMENT RESULTS ON THE ANALYSIS OF THE SSAB ON TRIPLE NOISE

PARAMETERS SETTING. THE TOP-PERFORMED
METHOD IS LABELED IN RED

of blocks as in HRNet [40], i.e., setting 3). This setting is still
inferior to the full HSGAN, which demonstrates the proposed
HSGAN architecture contributes to better performance. Setting
3) is also inferior to settings 1) and 2) since there are two
degradations applied to HSGAN.

In addition, we conduct two additional experiments by
increasing the noise parameters by double or triple used in
[48] (i.e., double/triple noise parameters compared with the
setting “HS from real-world images with fixed CRF.”) The
noise parameters include the gain parameter of the shot noise
(Poisson noise) and the sigma value of the zero-mean read
noise (Gaussian noise). The experiment results are concluded
in Tables VIII and IX, respectively. On the one hand, set-
tings 1)–3) obtain lower HS reconstruction accuracy than
HSGAN. It demonstrates the proposed SSAB and the number
of SSABs are significant for HSGAN. On the other hand,
the performance of HRNet is inferior to settings 1)–3) and
HSGAN if the input is noisy (please the last three columns
in Tables VII–IX). It shows that the proposed SSAB has
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significant value when receiving real-world noisy data. It
greatly improves the denoising ability of HSGAN.

In conclusion, the proposed HSGAN with the SSAB is
significant for achieving a high HS reconstruction quality.

VI. CONCLUSION

In this article, we present an HSGAN framework for auto-
matically reconstructing the HS spectrum from RGB images.
It is a GAN-based architecture and we propose a two-stage
adversarial training strategy. The generator is a top-down
four-level hierarchical architecture that extracts and combines
features at different scales. We propose SSABs at each level to
improve the feature representation. It includes three sequential
operations, i.e., feature distillation, spatial attention, and spec-
tral attention. The discriminator is a patch-based architecture
and we also use SSABs in it. Finally, we conduct experiments
on five well-known HS datasets (NUS, Harvard, ICVL, CAVE,
and ARAD) with three different settings (HS reconstruction
from clean images with non-fixed CRF, from clean images
with fixed CRF, and real-world images with fixed CRF). The
performance of HSGAN is superior to existing methods on
all the datasets, which demonstrates its good generalization
ability across different RGB images and scenes. Also, HSGAN
recovers consistently higher quality HS spectrum from both
clean and real-world images.

ACKNOWLEDGMENT

The authors would like to thank Qinbin Li and Xuehui Wang
for their kind discussions and hardware support. They would
also like to thank the anonymous reviewers and editors for
many helpful comments for this work.

REFERENCES

[1] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Trans. Geosci.
Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[2] M. J. Mendenhall and E. Merenyi, “Relevance-based feature extraction
for hyperspectral images,” IEEE Trans. Neural Netw., vol. 19, no. 4,
pp. 658–672, Apr. 2008.

[3] P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, “A survey on
spectral–spatial classification techniques based on attribute profiles,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353,
May 2015.

[4] Y. Chen, X. Zhao, and X. Jia, “Spectral–spatial classification of hyper-
spectral data based on deep belief network,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381–2392, Jun. 2015.

[5] Y. Gao, X. Wang, Y. Cheng, and Z. J. Wang, “Dimensionality reduction
for hyperspectral data based on class-aware tensor neighborhood graph
and patch alignment,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 8, pp. 1582–1593, Aug. 2015.

[6] P. Zhong and R. Wang, “Jointly learning the hybrid CRF and MLR
model for simultaneous denoising and classification of hyperspectral
imagery,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7,
pp. 1319–1334, Jul. 2014.

[7] Q. Wang, J. Lin, and Y. Yuan, “Salient band selection for hyperspectral
image classification via manifold ranking,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 6, pp. 1279–1289, Jun. 2016.

[8] N. Akhtar and A. Mian, “Nonparametric coupled Bayesian dictionary
and classifier learning for hyperspectral classification,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 4038–4050, Sep. 2018.

[9] R. Dian, S. Li, A. Guo, and L. Fang, “Deep hyperspectral image
sharpening,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5345–5355, Nov. 2018.

[10] S. Jia, Z. Lin, B. Deng, J. Zhu, and Q. Li, “Cascade superpixel
regularized Gabor feature fusion for hyperspectral image classification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1638–1652,
May 2020.

[11] J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and
multispectral imaging for evaluating food safety and quality,” J. Food
Eng., vol. 118, no. 2, pp. 157–171, Sep. 2013.

[12] J. A. Jablonski, T. J. Bihl, and K. W. Bauer, “Principal component
reconstruction error for hyperspectral anomaly detection,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 8, pp. 1725–1729, Aug. 2015.

[13] Y. Zhang, Y. Xi, Q. Yang, W. Cong, J. Zhou, and G. Wang, “Spectral
CT reconstruction with image sparsity and spectral mean,” IEEE Trans.
Comput. Imag., vol. 2, no. 4, pp. 510–523, Dec. 2016.

[14] Y. Zhang, X. Mou, G. Wang, and H. Yu, “Tensor-based dictionary
learning for spectral CT reconstruction,” IEEE Trans. Med. Imag.,
vol. 36, no. 1, pp. 142–154, Jan. 2017.

[15] H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for
fluorescence and Raman microscopy: Acousto-optic and liquid crystal
tunable filters,” Appl. Spectrosc., vol. 48, no. 7, pp. 857–866, Jul. 1994.

[16] E. Herrala, J. T. Okkonen, T. S. Hyvarinen, M. Aikio, and J. Lammas-
niemi, “Imaging spectrometer for process industry applications,” Proc.
SPIE, vol. 2248, pp. 33–40, Nov. 1994.

[17] N. Gat, “Imaging spectroscopy using tunable filters: A review,” in Proc.
SPIE, Wavelet Appl. VII, vol. 4056. Bellingham, WA, USA: SPIE, 2000,
pp. 50–64.

[18] J. James, Spectrograph Design Fundamentals. Cambridge, U.K.:
Cambridge Univ. Press, 2007.

[19] A. Mohan, R. Raskar, and J. Tumblin, “Agile spectrum imaging: Pro-
grammable wavelength modulation for cameras and projectors,” Comput.
Graph. Forum, vol. 27, no. 2, pp. 709–717, Apr. 2008.

[20] T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spec-
tral image information,” Opt. Lett., vol. 16, no. 16, pp. 1277–1279,
1991.

[21] M. Descour and E. Dereniak, “Computed-tomography imaging spec-
trometer: Experimental calibration and reconstruction results,” Appl.
Opt., vol. 34, no. 22, pp. 4817–4826, 1995.

[22] B. Ford, M. R. Descour, and R. M. Lynch, “Large-image-format com-
puted tomography imaging spectrometer for fluorescence microscopy,”
Opt. Exp., vol. 9, no. 9, pp. 444–453, 2001.

[23] W. R. Johnson, D. W. Wilson, and G. Bearman, “Spatial–spectral
modulating snapshot hyperspectral imager,” Appl. Opt., vol. 45, no. 9,
pp. 1898–1908, 2006.

[24] N. Hagen and E. L. Dereniak, “Analysis of computed tomographic
imaging spectrometers I spatial and spectral resolution,” Appl. Opt.,
vol. 47, no. 28, p. F85, 2008.

[25] B. Geelen, N. Tack, and A. Lambrechts, “A compact snapshot multi-
spectral imager with a monolithically integrated per-pixel filter mosaic,”
Proc. SPIE, vol. 8974, Mar. 2014, Art. no. 89740L.

[26] P. Gonzalez et al., “A novel CMOS-compatible, monolithically inte-
grated line-scan hyperspectral imager covering the VIS-NIR range,”
Proc. SPIE, vol. 9855, May 2016, Art. no. 98550N.

[27] X. Cao et al., “Computational snapshot multispectral cameras: Toward
dynamic capture of the spectral world,” IEEE Signal Process. Mag.,
vol. 33, no. 5, pp. 95–108, Sep. 2016.

[28] M. D. Grossberg and S. K. Nayar, “What is the space of camera response
functions?” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2003, p. 602.

[29] A. Robles-Kelly, “Single image spectral reconstruction for multimedia
applications,” in Proc. 23rd ACM Int. Conf. Multimedia, Oct. 2015,
pp. 251–260.

[30] B. Arad and O. Ben-Shahar, “Sparse recovery of hyperspectral signal
from natural RGB images,” in Proc. ECCV, 2016, pp. 19–34.

[31] J. Wu, J. Aeschbacher, and R. Timofte, “In defense of shallow learned
spectral reconstruction from RGB images,” in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 471–479.

[32] Z. Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN:
CNN-based hyperspectral image recovery from spectrally undersampled
projections,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW),
Oct. 2017, pp. 518–525.

[33] S. Koundinya et al., “2D-3D CNN based architectures for spec-
tral reconstruction from RGB images,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 844–851.

[34] Y. Baran Can and R. Timofte, “An efficient CNN for spectral recon-
struction from RGB images,” 2018, arXiv:1804.04647.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 22,2023 at 10:01:02 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: HSGAN: HS RECONSTRUCTION FROM RGB IMAGES 13

[35] Z. Shi, C. Chen, Z. Xiong, D. Liu, and F. Wu, “HSCNN+: Advanced
CNN-based hyperspectral recovery from RGB images,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2018, pp. 939–947.

[36] H. Li, Z. Xiong, Z. Shi, L. Wang, D. Liu, and F. Wu, “HSVCNN:
CNN-based hyperspectral reconstruction from RGB videos,” in Proc.
25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018, pp. 3323–3327.

[37] A. Alvarez-Gila, J. Van De Weijer, and E. Garrote, “Adversarial networks
for spatial context-aware spectral image reconstruction from RGB,” in
Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 480–490.

[38] T. Stiebel, S. Koppers, P. Seltsam, and D. Merhof, “Reconstructing spec-
tral images from RGB-images using a convolutional neural network,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2018, pp. 948–953.

[39] D. S. Nathan, K. Uma, D. S. Vinothini, B. S. Bama, and
S. M. M. Roomi, “Light weight residual dense attention net for spectral
reconstruction from RGB images,” 2020, arXiv:2004.06930.

[40] Y. Zhao, L.-M. Po, Q. Yan, W. Liu, and T. Lin, “Hierarchical regres-
sion network for spectral reconstruction from RGB images,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 422–423.

[41] Y.-T. Lin and G. D. Finlayson, “Physically plausible spectral reconstruc-
tion from RGB images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 2257–2266.

[42] J. Li, C. Wu, R. Song, Y. Li, and W. Xie, “Residual augmented
attentional U-shaped network for spectral reconstruction from RGB
images,” Remote Sens., vol. 13, no. 1, p. 115, Dec. 2020.

[43] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672–2680.

[44] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2005, pp. 60–65.

[45] R. M. Nguyen, D. K. Prasad, and M. S. Brown, “Training-based
spectral reconstruction from a single RGB image,” in Proc. ECCV, 2014,
pp. 186–201.

[46] A. Chakrabarti and T. Zickler, “Statistics of real-world hyperspectral
images,” in Proc. CVPR, Jun. 2011, pp. 193–200.

[47] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted
pixel camera: Postcapture control of resolution, dynamic range, and
spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241–2253,
Sep. 2010.

[48] B. Arad et al., “NTIRE 2020 challenge on spectral reconstruction
from an RGB image,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 1806–1822.

[49] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and
J. T. Barron, “Unprocessing images for learned raw denoising,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 11028–11037.

[50] S. Galliani, C. Lanaras, D. Marmanis, E. Baltsavias, and K. Schindler,
“Learned spectral super-resolution,” 2017, arXiv:1703.09470.

[51] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention—MICCAI. Heidelberg,
Germany: Springer, 2015, pp. 234–241.

[52] A. Banerjee and A. Palrecha, “MXR-U-Nets for real time hyperspectral
reconstruction,” 2020, arXiv:2004.07003.

[53] J. Li, C. Wu, R. Song, Y. Li, and F. Liu, “Adaptive weighted attention
network with camera spectral sensitivity prior for spectral reconstruction
from RGB images,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2020, pp. 462–463.

[54] M. Yamaguchi et al., “High-fidelity video and still-image communi-
cation based on spectral information: Natural vision system and its
applications,” in Proc. SPIE, vol. 6062, pp. 129–140, Jan. 2006.

[55] M. Rosen and W. Jiang, “Lippman 2000: A spectral image database
under construction,” in Proc. Int. Symp. Multispectral Imaging Color
Reproduction Digital Arch., 1999, pp. 117–122.

[56] M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz,
“Single-shot compressive spectral imaging with a dual-disperser archi-
tecture,” Opt. Exp., vol. 15, no. 21, pp. 14013–14027, Oct. 2007.

[57] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser
design for coded aperture snapshot spectral imaging,” Appl. Opt., vol. 47,
no. 10, p. B44, 2008.

[58] X. Lin, Y. Liu, J. Wu, and Q. Dai, “Spatial–spectral encoded compressive
hyperspectral imaging,” ACM Trans. Graph., vol. 33, no. 6, pp. 1–11,
Nov. 2014.

[59] L. Wang, Z. Xiong, G. Shi, F. Wu, and W. Zeng, “Adaptive non-
local sparse representation for dual-camera compressive hyperspectral
imaging,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 10,
pp. 2104–2111, Oct. 2017.

[60] N. Eslahi, S. H. Amirshahi, and F. Agahian, “Recovery of spectral data
using weighted canonical correlation regression,” Opt. Rev., vol. 16,
no. 3, pp. 296–303, May 2009.

[61] F. Ayala, J. F. Echávarri, P. Renet, and A. I. Negueruela, “Use of
three tristimulus values from surface reflectance spectra to calculate
the principal components for reconstructing these spectra by using only
three eigenvectors,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 23, no.
8, pp. 2020–2026, 2006.

[62] X. Zhang and H. Xu, “Reconstructing spectral reflectance by dividing
spectral space and extending the principal components in principal
component analysis,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 25,
no. 2, pp. 371–378, 2008.

[63] Y. Jia et al., “From RGB to spectrum for natural scenes via manifold-
based mapping,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4715–4723.

[64] N. Akhtar and A. Mian, “Hyperspectral recovery from RGB images
using Gaussian processes,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 42, no. 1, pp. 100–113, Jan. 2020.

[65] Y. Li, C. Wang, and J. Zhao, “Locally linear embedded sparse coding
for spectral reconstruction from RGB images,” IEEE Signal Process.
Lett., vol. 25, no. 3, pp. 363–367, Mar. 2018.

[66] Y. Fu, Y. Zheng, L. Zhang, and H. Huang, “Spectral reflectance recovery
from a single RGB image,” IEEE Trans. Comput. Imag., vol. 4, no. 3,
pp. 382–394, Sep. 2018.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[68] I. Choi, D. S. Jeon, G. Nam, D. Gutierrez, and M. H. Kim, “High-
quality hyperspectral reconstruction using a spectral prior,” ACM Trans.
Graph., vol. 36, no. 6, pp. 1–13, Dec. 2017.

[69] L. Wang, C. Sun, Y. Fu, M. H. Kim, and H. Huang, “Hyperspectral
image reconstruction using a deep spatial–spectral prior,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8024–8033.

[70] T. Zhang, Y. Fu, L. Wang, and H. Huang, “Hyperspectral image recon-
struction using deep external and internal learning,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8558–8567.

[71] X. Miao, X. Yuan, Y. Pu, and V. Athitsos, “Lambda-Net: Reconstruct
hyperspectral images from a snapshot measurement,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 4058–4068.

[72] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269.

[73] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[74] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “DeblurGAN-v2: Deblur-
ring (orders-of-magnitude) faster and better,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 8877–8886.

[75] Y. Zhao, L.-M. Po, K.-W. Cheung, W.-Y. Yu, and Y. A. U. Rehman,
“SCGAN: Saliency map-guided colorization with generative adversarial
network,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, no. 8,
pp. 3062–3077, Aug. 2021.

[76] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2813–2821.

[77] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. ICML, 2017, pp. 214–223.

[78] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” in Proc. NIPS, 2017,
pp. 5767–5777.

[79] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local Nash
equilibrium,” in Proc. NIPS, 2017, pp. 6626–6637.

[80] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in Proc. ICLR, 2018, pp. 1–26.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 22,2023 at 10:01:02 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[81] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1874–1883.

[82] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[83] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249–256.

[84] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2014, pp. 1–15.

[85] K. Ohsawa, F. Koenig, M. Yamaguchi, and N. Ohyama, “Multiprimary
display optimized for CIE1931 and CIE1964 color matching functions,”
in Proc. 9th Congr. Int. Colour Assoc., Jun. 2002, pp. 939–942.

[86] F. A. Kruse et al., “The spectral image processing system (SIPS)-
interactive visualization and analysis of imaging spectrometer data,”
Remote Sens. Environ., vol. 44, nos. 2–3, pp. 145–163, May 1993.

Yuzhi Zhao (Graduate Student Member, IEEE)
received the B.Eng. degree in electronic and infor-
mation engineering from the Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 2018, and the Ph.D. degree in electronic engineer-
ing from the City University of Hong Kong (CityU),
Hong Kong, in 2023.

His research interests include low-level vision,
computational photography, generative models, and
representation learning.

Dr. Zhao serves as a peer-reviewer in international
conferences and journals, such as CVPR, ICCV, ECCV, WACV, ACCV,
ICASSP, ICIP, and several IEEE Transactions.

Lai-Man Po (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in electronic engi-
neering from the City University of Hong Kong,
Hong Kong, in 1988 and 1991, respectively.

He has been with the Department of Electronic
Engineering, City University of Hong Kong, since
1991, where he is currently an Associate Professor
with the Department of Electrical Engineering. He
has authored more than 150 technical journal and
conference papers. His research interests include
image and video coding with an emphasis deep

learning-based computer vision algorithms.
Dr. Po is a member of the Technical Committee on Multimedia Systems

and Applications and the IEEE Circuits and Systems Society. He was the
Chairperson of the IEEE Signal Processing Hong Kong Chapter in 2012 and
2013. He was an Associate Editor of HKIE Transactions in 2011 to 2013.
He also served on the Organizing Committee, of the IEEE International
Conference on Acoustics, Speech and Signal Processing in 2003, and the
IEEE International Conference on Image Processing in 2010.

Tingyu Lin received the B.Eng. degree in software
engineering from the School of Data and Com-
puter Science, Sun Yat-sen University, Guangzhou,
China, in 2019, and the M.S. degree (Distinction) in
multimedia information technology from the Depart-
ment of Electronic Engineering, City University of
Hong Kong, Hong Kong, in 2020.

His research interests include computer vision,
computational photography, and deep learning.

Qiong Yan received the bachelor’s degree in com-
puter science and technology from the University
of Science and Technology of China, Hefei, China,
in 2009, and the Ph.D. degree in computer science
and engineering from the Chinese University of
Hong Kong, Hong Kong, in 2013.

She is currently a Research Director with Sense-
Time, Hong Kong, leading a group on computa-
tional imaging related research and production. Her
research focuses on low-level vision tasks, such
as image/video restoration and enhancement, and
image editing and generation.

Wei Liu received the B.S. and Ph.D. degrees from
the Harbin Institute of Technology, Harbin, China,
in 2016 and 2020, respectively.

He was a visiting student with the Ohio State
University, Columbus, OH, USA, for two years. He
used to be an intern with SenseTime, Hong Kong,
and currently works as an Algorithm Engineer
with ByteDance, Beijing, China. His research inter-
ests include image generation, domain adaptation,
semantic segmentation, and low-level computer
vision.

Dr. Liu serves as a Peer Reviewer for IEEE TRANSACTIONS ON IMAGE
PROCESSING, ISPRS Journal of Photogrammetry and Remote Sensing, and
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Pengfei Xian received the B.Eng. degree in electri-
cal engineering from the Harbin Institute of Technol-
ogy, Harbin, China, in 2017. He is currently pursuing
the Ph.D. degree in electrical engineering with the
City University of Hong Kong, Hong Kong.

His research interests include instance and sematic
segmentation on images and videos, together with
reinforcement learning applications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 22,2023 at 10:01:02 UTC from IEEE Xplore.  Restrictions apply. 


