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Abstract—In this paper, we propose a scribble-based video
colorization network with temporal aggregation called SVCNet.
It can colorize monochrome videos based on different user-given
color scribbles. It addresses three common issues in the scribble-
based video colorization area: colorization vividness, temporal
consistency, and color bleeding. To improve the colorization
quality and strengthen the temporal consistency, we adopt two
sequential sub-networks in SVCNet for precise colorization and
temporal smoothing, respectively. The first stage includes a
pyramid feature encoder to incorporate color scribbles with a
grayscale frame, and a semantic feature encoder to extract se-
mantics. The second stage finetunes the output from the first stage
by aggregating the information of neighboring colorized frames
(as short-range connections) and the first colorized frame (as a
long-range connection). To alleviate the color bleeding artifacts,
we learn video colorization and segmentation simultaneously.
Furthermore, we set the majority of operations on a fixed small
image resolution and use a Super-resolution Module at the tail
of SVCNet to recover original sizes. It allows the SVCNet to fit
different image resolutions at the inference. Finally, we evaluate
the proposed SVCNet on DAVIS and Videvo benchmarks. The
experimental results demonstrate that SVCNet produces both
higher-quality and more temporally consistent videos than other
well-known video colorization approaches. The codes and models
can be found at https://github.com/zhaoyuzhi/SVCNet.

Index Terms—Video Colorization, Scribble-based Colorization,
Temporal Aggression, Segmentation.

I. INTRODUCTION

Video colorization is the process of attaching plausible
colors to monochrome videos. Restricted by imaging tech-
nology, many old films are preserved in black-and-white
format. It is highly desirable for people to watch colorful
videos. Recently, deep neural networks have achieved great
improvements in both video restoration and colorization areas.
Therefore, recovering realistic and colorful videos with deep
neural networks becomes plausible.

The main difficulties for video colorization are colorization
vividness and temporal consistency of sequential frames. Be-
sides, color bleeding (i.e., the spreading of colors beyond the
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object boundary) is another challenge. There are many solu-
tions for existing methods to these problems, which typically
fall into one of these four categories:

1) Image colorization and temporal smoothing [1]–[4];
2) Image colorization and color propagation [5]–[8];
3) Fully-automatic video colorization [9]–[11];
4) Exemplar-based video colorization [12]–[14].
The first three categories are not based on additional guid-

ance such as exemplar images and color scribbles. To learn
the grayscale to color mapping, they normally adopt large
training sets like ImageNet [15] to learn rich data priors. The
differences between the three categories are obvious. Since
category 1) relies on pre-trained image colorization methods
and only finetunes the single image colorization results, video
continuity cannot be ensured. Category 2) is similar to cat-
egory 1) but only uses the first colorized frame. It depends
on the long-range connection too much and easily ignores the
characteristics of every single frame. Category 3) performs
better than 1) and 2) since it jointly learns colorization and
temporal smoothing. However, they are difficult to predict
realistic color embeddings since the grayscale format losses
too much information compared with the color format (e.g.,
RGB, YUV, and CIE Lab). Furthermore, they may sacrifice col-
orfulness due to temporal constraints. To improve colorization
quality, category 4) induces an exemplar image to guide the
video colorization. Though it produces more colorful videos
than other methods, it requires a relatively accurate exemplar
image similar to the color version of the monochrome input.

To achieve higher video colorization quality than existing
methods and minimize color bleeding artifacts, we propose the
first scribble-based video colorization framework called SVC-
Net, where the data flow is illustrated in Figure 1. Compared
with previous solutions, there are four improvements:

1) Improved colorization vividness: SVCNet includes two
stages for precise colorization (CPNet) and temporal smooth-
ing (SSNet), respectively. The CPNet is a multi-input-multi-
output architecture that achieves better colorization quality;

2) Strengthened temporal consistency: SVCNet includes
both bidirectional projection and long-range connection, which
effectively aggregate the temporal information of the video;

3) Reduced color bleeding artifacts: SVCNet learns an addi-
tional auxiliary segmentation task to minimize color bleeding
artifacts besides performing video colorization;

4) Reduced manual work: SVCNet only needs sparse color
scribbles instead of an accurate exemplar image.

https://github.com/zhaoyuzhi/SVCNet
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(a) The data flow of SVCNet (including both CPNet and SSNet) at time steps 1, 𝑖, and 𝑖 + 1 (b) The data flow of CPNet at time step 𝑖 (c) The data flow of SSNet at time step 𝑖
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Fig. 1. Illustration of the data flows of (a) SVCNet (including CPNet and SSNet), (b) CPNet, and (c) SSNet. Users only need to provide color scribbles for
the first frame sab1 . The following color scribbles sab2 -sabt are obtained by warping sab1 using the forward optical flows.

SVCNet includes two sub-networks: color propagation sub-
network (CPNet) and spatiotemporal smoothing sub-network
(SSNet), respectively. Its data flow is shown in Figure 1.
Firstly, CPNet is a multi-input-multi-output architecture, as
shown in Figure 1 (b). It includes two encoders to extract
semantics from the grayscale input and combine the infor-
mation of both inputs, which performs precise scribble-color
propagation and ensures good colorization quality when there
are even no color scribbles. In addition, it has two decoder
branches, where the colorization branch outputs color embed-
dings and the other outputs the corresponding segmentation
map. The segmentation branch assists the colorization branch
through backward propagation at the training. It helps the
CPNet reduce the color bleeding artifacts since it pushes the
network to separate clear boundaries. Secondly, SSNet refines
every colorized frame of the CPNet, as shown in Figure 1 (c).
On one hand, it performs the bidirectional projection based
on previous, current, and leading frames by a Refinement
Module, which serve as short-range connections. On the other
hand, it extracts and aligns the first colorized frame as the
long-range connection by a Correspondence Module. After
that, a Combination Module aggregates all the information.
Therefore, SSNet colorizes videos with satisfactory temporal
consistency. We notice color embeddings (i.e., ab channels
in the CIE Lab color space) are much sparser than edges.
Based on this and also inspired by [16]–[19], we set all
the aforementioned operations on a small and fixed image
resolution and use a Super-resolution Module at the end of
the SSNet to recover the original image resolution. Therefore,
SVCNet fits different image resolutions at the inference.
Finally, compared with exemplar-based video colorization, the
proposed framework only needs sparse color scribbles input.
Users do not need to select a proper exemplar image while
only need to define the desired colors in some specific pixels.

We train and evaluate the SVCNet on both DAVIS [20] and
Videvo [21] datasets. Extensive experiments demonstrate that
SVCNet performs better than state-of-the-art video coloriza-
tion methods. We also show that the CPNet achieves state-
of-the-art scribble-based image colorization performance with
fewer color bleeding artifacts. The main contributions of this
paper are as follows:

1) We propose the first scribble-based video colorization

framework called SVCNet, which includes two stages for color
propagation and spatiotemporal smoothing, respectively. We
set the most operations on a small and fixed image resolution
to reduce the computational costs for producing videos with
different large resolutions;

2) We propose a temporal aggregation method for video
colorization including both short- and long-range connections;

3) We adopt a segmentation loss to address color bleeding
artifacts in the video colorization area. Also, we generate
saliency maps as pseudo-binary segmentation maps when there
are no labeled segmentation maps in the datasets.

II. RELATED WORK

Image Colorization. Image colorization learns to reconstruct
color embeddings from corresponding grayscale images. It can
be categorized into reference-based colorization (e.g., scribble-
based colorization [22]–[33], exemplar-based colorization [5],
[6], [12], [13], [34]–[46], text-based colorization [47]–[49])
and fully-automatic colorization [18], [50]–[66]. Reference-
based methods require additional user inputs that contain
information relevant to the desired colors. The colorization
systems use such information to assign possible colors to
grayscale input images. Specifically, scribble-based methods
propagate user-given color scribbles to the rest of the image.
Exemplar-based methods attach colors from exemplar images
to grayscale images. Text-based methods translate the infor-
mation from words or languages into colors. Recently, deep
neural networks improve colorization performance thanks to
their superior feature representation ability. Built upon them,
fully-automatic methods directly learn end-to-end colorization
without any additional information on large datasets. To further
improve the colorization quality, some specific designs have
been used such as hyper-column [51], pre-trained backbones
[51]–[53], [57], [59], multi-task learning [53], [56]–[59], and
auxiliary loss functions [54].
Video Colorization. There are mainly four categories of
existing video colorization methods in terms of data flow, as
shown in Figure 2. The descriptions are as follows:

1) Image colorization and temporal smoothing [1], [2], [4],
[67], [68] (Figure 2 (a)): Based on the progress of image
colorization methods, they added the temporal consistency on
single colorized frames by post-processing them;
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(a) image colorization 
and temporal smoothing

(b) one frame colorization 
and color propagation (c) fully-automatic video colorization (d) exemplar-based video colorization (e) scribble-based video colorization (SVCNet)

f pre-trained image colorization network (parameters are fixed) image colorization network (parameters can be optimized)f k refinement network (parameters can be optimized)

𝒙𝒍: grayscale frame input, l channel 𝒛𝒂𝒃: video colorization output, ab channels 𝒔𝒂𝒃: color scribble input, ab channels𝒆𝒍𝒂𝒃: color image exemplar input, lab channels
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Fig. 2. Illustration of data flows of video colorization methods: (a) image colorization and temporal smoothing [1]–[4]; (b) one frame colorization and
color propagation [5]–[8]; (c) fully-automatic video colorization [9]–[11]; (d) exemplar-based colorization [12]–[14]; (e) scribble-based colorization (SVCNet),
where only the first color scribble sab1 is given by the user. The following color scribbles sab2 , sab3 , ... , sabt are obtained by warping the first color scribble
sab1 using forward optical flows O1→2, O2→3, ... , Ot−1→t.

2) Image colorization (e.g., the first frame) and color prop-
agation [5]–[8] (Figure 2 (b)): They use one colorized frame
to start the colorization. The colors and the correspondence of
the following frames are learned sequentially;

3) Fully-automatic video colorization [9]–[11] (Figure 2
(c)): They learn the video colorization and temporal corre-
spondence jointly on large video datasets by neural networks
instead of learning it individually as categories 1) and 2);

4) Exemplar-based video colorization [12]–[14] (Figure 2
(d)): They propagate the colors from the exemplar image to
the monochrome frames in a video.

Normally, the performance of both categories 1) and 2) are
not satisfactory since the optimization of image colorization
and temporal smoothing is separated. They require a powerful
pre-trained image colorization algorithm, but normally the
colorized videos are temporally not consistent. To address the
issue, the other two categories combine image colorization
and temporal smoothing together and learn them jointly. For
instance, Lei et al. [9] proposed a two-stage multi-modal video
colorization framework. Kouzouglidis et al. [10] adopted 3D
convolution as the basic operator. Zhao et al. [11] used a global
feature extractor and a placeholder feature extractor in the
generator. Though the methods generate colorful videos auto-
matically, their results are still not vivid enough. To improve
the colorization quality, category 4) adopted an additional
exemplar guidance image, e.g., Zhang et al. [12] aligned
the exemplar with grayscale frames by a Nonlocal network
and then fuse them by a ColorNet. It requires a high-quality
exemplar image to obtain satisfactory results. To further ease
the exemplar selection, we propose the first scribble-based
video colorization method called SVCNet. The data flow of
SVCNet is shown in Figure 2 (e).
Scribble-based Colorization. The scribble-based colorization
aims to propagate colors from user-given color scribbles
to monochrome images. Common propagation schemes use
local correspondences [22], edges [23], or luminance-weighted
chrominance blending [24]. However, these methods focused
on local relations and failed to colorize the pixels far to color
scribbles. To model the long-range connection, Xu et al. [27]
proposed an affinity-based image editing scheme and Chen et
al. [26] learned the mapping in feature space. However, the
results are still highly related to the number or the location

of given color scribbles. Moreover, the color bleeding effect
is obvious when given color scribbles are close to the edges
of objects. Recently, Zhang et al. [30] used a neural network
to extract the semantics and achieved better performance. In
this paper, we further extend the scribble-based colorization
to videos by the SVCNet framework.
Saliency Detection. It aims to localize the potential perceptual
significant regions of the image by “saliency map”. The
early saliency detection methods were based on hand-crafted
features such as color variation [69], boundaries [70], and
super-pixel [71], which predicted credible boundaries but not
accurate structures of salient objects. Recent deep-learning-
based methods generalized the saliency detection to diverse
images and adopted different architectures such as recurrent
network [72], encoder-decoder [73]–[76], and feature pyramid
network [77]–[80] to fuse details and high-level semantics.
Semantic Segmentation. It aims to localize different objects
in an image. The pioneer deep-learning-based method FCN
[81] used deconvolution and fusion of pooling layers. To
enhance feature representation and context information, PSP-
Net [82] adopted a pyramid pooling module and DeepLab
[83] used different rates of dilated convolution. Bulti upon it,
Chen et al. [84] combined the ASPPM with encoder-decoder
architecture in DeepLab to let the network capture features
in both cross and intra layers. Yang et al. [85] proposed
a DenseASPPM to assemble different dilated branches. Re-
cently, visual recognition in other data modalities such as 3D
segmentation [86]–[88] has achieved decent performance.

III. METHODOLOGY

A. Problem Formulation

Given continuous grayscale frames, we aim to generate
realistic color embeddings based on user-given color scribbles.
To assist the colorization, we also generate corresponding
segmentation maps to minimize color bleeding artifacts. We
formulate the problem as maximizing a posteriori of color em-
beddings and segmentation maps conditioned on the grayscale
frames xl

1, x
l
2, ..., x

l
t, user-given color scribbles sab1 , and net-

work parameters Θ of the SVCNet:

Θ∗ = argmax
Θ

p(xab
1:t, q1:t|xl

1:t, s
ab
1 ,Θ), (1)
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(a) Illustration of the CPNet architecture. The detailed layers of different modules of the CPNet are shown in the figure.

(b) Illustration of the SSNet architecture. The detailed layers and channel numbers of different modules of the SSNet are shown in the figure.

(c) Illustration of training data flow and warm-up training results of the
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Fig. 3. Illustration of the detailed architectures for (a) CPNet and (b) SSNet. The special blocks are annotated while the other blocks are normal convolutional
layers. The number of channels is annotated beside the blocks. Illustration of the training data flow and warm-up training results of (c) SSNet Refinement
Module and (d) SSNet Super-resolution Module.

where xl
1:t and xab

1:t are the grayscale component and color
component in the CIE Lab color space from the 1-st frame
to the t-th frame. q1:t are ground truth segmentation maps.
Θ∗ are theoretically optimal SVCNet parameters. To optimize
the network, we further formulate the loss function L on both
color embeddings and segmentation maps:

minimize
SV CNet(.;Θ)

t∑
i=1

(L(zabi , xab
i ) + L(pi, qi)), (2)

where zabi and pi are the outputs generated by the SVCNet at
time step i. xab

i and qi are ground truth color embeddings and
segmentation maps at time step i. SV CNet(.; Θ) denotes the
SVCNet with network parameter Θ.

B. SVCNet Architecture

The SVCNet consists of two sub-networks: color propaga-
tion sub-network (CPNet) and spatiotemporal smoothing sub-
network (SSNet), as shown in Figures 1 and 3. Below we
present every sub-network and module.
CPNet. CPNet performs scribble-based image colorization,
which includes two encoders and two decoders, as shown in
Figure 3 (a). To merge the information of grayscale input
and color scribble guidance, we adopt a pyramid feature
encoder. Considering that the color scribbles for far time steps
are obtained by warping the first color scribble may vanish,
we strengthen the colorization quality by the other semantic
feature encoder, which is a pre-trained network. The resulting

features are concatenated and processed by a bottleneck for
fusion. Afterward, the pyramid feature decoder produces a
color embedding from the output of bottleneck and short-cut
connections of the pyramid feature encoder [89]. In addition,
the last three decoder layers are fed into a segmentation
branch to produce corresponding segmentation maps. At the
training, the segmentation branch helps revise the weights of
the colorization branch through backpropagation.
SSNet. SSNet post-processes the output of CPNet. It enhances
the temporal consistency of generated frames and includes four
modules, as shown in Figure 3 (b).
Refinement Module. It is designed for processing short-
range correlations, which are modeled by both previous frames
(yabi−3, y

ab
i−2, y

ab
i−1, d

ab
i−1) and leading frames (yabi+1, y

ab
i+2, y

ab
i+3)

on time step i. To match their locations with the current frame,
we first warp them to the position of the current frame with
optical flows, which are computed by a pre-trained PWC-
Net [90] on grayscale frames. Then, we use the Refinement
Module to post-process them in order to minimize the warping
artifacts caused by occlusions and motion boundaries. To
represent such regions, we compute the occlusion mask for
warped previous and leading frames, which are defined as:

Mj→i = exp(−α||W(x↓l
j , Oj→i)− x↓l

i||22), (3)

where Mj→i and Oj→i denote the occlusion mask and the
optical flow from time step j to i, respectively. x↓l

j and x↓l
i

are downsampled real grayscale images at time steps j and
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i, respectively. W(∗) is the warping operation. α is a hyper-
parameter that controls the sensitivity of the occlusion mask.
The forwarding procedure of Refinement Module (RM) can
be represented as:

rabj = RM(W(yabj , Oj→i),Mj→i), (4)

where we set j = (i−3, i−2, i−1, i+1, i+2, i+3). Also, we
refine the previous SSNet low-resolution output dabi−1, which
is the output of the Combination Module, as follows:

hab
i−1 = RM(W(dabi−1, Oi−1→i),Mi−1→i). (5)

Correspondence Module. The long-range connection be-
tween the first colorized frame and the current frame is
modeled by the Correspondence Module. We do not use the
optical flow since there often exist large motions between
them. On the contrary, we compute the similarity matrix
between them and use it to warp the features of the first
generated color embeddings. Firstly, like in [12], we build the
feature pyramid of RGB-formatted first frame yrgb1 and current
grayscale frame x↓l

i (yrgb1 , x↓l
i ∈ RH×W×C) by extracting

their features of layers conv2 2, conv3 2, conv4 2, and conv5 2

of a pre-trained VGG-19 network [91]. All the features are
upsampled to the same resolution as conv2 2 (i.e., 1

2H× 1
2W )

and then concatenated together. The resulting features for yrgb1

and x↓l
i are denoted as F1 and Fi, respectively. Secondly, the

similarity matrix S1↔i ∈ R 1
4HW× 1

4HW is computed as:

S1↔i =
F1 − µ(F1)

||F1 − µ(F1)||2
· Fi − µ(Fi)

||Fi − µ(Fi)||2
, (6)

where µ(∗) denotes the mean operation. Then, we use the
similarity matrix to warp yab1 [12] as follows:

cabi = (
∑
m

softmax
h

(τ · S1↔t(:,m)) · y↓ab1 )↑, (7)

where cabi is the warped result of the first generated color
embeddings yab1 . τ is the temperature parameter. There is a
downsampling operation since we need to match the resolution
of the similarity map and the color embeddings.
Combination Module. Next, the Combination Module aggre-
gates the information from outputs of the Refinement Mod-
ule (rabi−3, r

ab
i−2, r

ab
i−1, h

ab
i−1, r

ab
i+1, r

ab
i+2, r

ab
i+3), Correspondence

Module (cabi ), and the current generated color embeddings
from the CPNet (yabi ) by a U-Net-like architecture [89]. The
output of the Combination Module is denoted as dabi .
Super-resolution Module. Finally, since previous operations
run on a fixed small resolution, the Super-resolution Module
recovers the frames with original sizes at inference from
dabi . For different high resolutions, we use the same feature
extraction head but different tails with multiple upsampling
ratios. The final output is denoted as zabi .

C. Training Strategy

Directly optimizing the large SVCNet without any initializa-
tion easily encounters the gradient exploding issue. To stabilize
the training, we propose the warm-up pre-training for CPNet
and some modules of SSNet, respectively. After that, we train
the full SVCNet on video datasets. The details are as follows:

1) CPNet warm-up pre-training: We pre-train the CPNet on
ImageNet dataset [15], which provides much more modes and
scenes than video datasets. Since the ImageNet dataset does
not provide segmentation maps, we generate saliency maps as
ground truth by [78]. We then finetune the CPNet on single
frames from video datasets (DAVIS [20] and Videvo [21]). It
makes CPNet fit the sizes of video frames better. Similarly,
we generate saliency maps as pseudo segmentation maps for
the Videvo dataset by [78].

2) SSNet warm-up pre-training: We conduct the self-
supervised learning for the Refinement Module and the Super-
resolution Module on two video datasets: DAVIS [20] and
Videvo [21]. Firstly, for a frame xab

i in a video, we stochasti-
cally warp the previous frame xab

i−1 or leading frame xab
i+1 to

the position of xab
t as the input for the Refinement Module.

We make it reconstruct itself and train it with an L1 loss.
Secondly, we downsample a frame of the original resolution
with different ratios (2, 4, and 8) as the input for the Super-
resolution Module. We then let the Super-resolution Module
reconstruct itself and train it with an L1 loss. The warm-
up training is conducted only on ab color components. It
ends when the loss is small and stable enough. The results
are shown in Figure 3 (c) and (d). The Refinement Module
can reduce the artifacts in the occluded regions. The Super-
resolution Module can minimize the color bleeding artifacts
especially when the upsampling ratio is large (e.g., 8).

3) joint training stage: We optimize the full SVCNet (CPNet
and SSNet) based on all the warm-up training weights. We
randomly select 7 continuous frames in a video and then flip
the first 6 frames as a batch at the training. In what follows,
we will introduce the loss functions for the “CPNet warm-up
pre-training” and “joint training stage”.

D. Loss Function
When training CPNet, we apply a colorization loss and a

segmentation loss for the outputs of the two pyramid fusion
decoder branches, respectively:

LCP
c = E[||yabi − x↓ab

i ||1], (8)

LCP
s = E[||pi − qi||1], (9)

where yabi and pi are the outputs of two branches. x↓ab
i and

qi are the corresponding ground truth. Then, the total loss
function for the CPNet warm-up training is defined as:

LCP = LCP
c + λsL

CP
s , (10)

where λs is the trade-off parameter.
For the joint training, we maintain the CPNet loss function

and add the SSNet loss function. Specifically, we adopt
colorization losses for the output of the Combination Module
(dabi ) and the output of the Super-resolution Module (zabi ),
respectively. They can be represented as:

LSS = E[||dabi − x↓ab
i ||1] + E[||zabi − xab

i ||1], (11)

where x↓ab
i and xab

i are ground truth at low resolution and
original resolution, respectively.

The full loss function of the joint training stage is the sum:

Ljoint = LCP + LSS . (12)
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TABLE I
CONCLUSION OF OPTIMIZATION DETAILS FOR DIFFERENT TRAINING STAGES.

Training stage Trained network Loss Training set Total iterations Initial learning rate (LR) LR halved iteration
1) CPNet warm-up CPNet LCP ImageNet 800,740 1×10−4 400,370

pre-training CPNet LCP DAVIS+Videvo 200,600 5×10−5 100,300
2) SSNet warm-up Refinement Module L1 DAVIS+Videvo 312,000 1×10−4 156,000

pre-training Super-resolution Module L1 DAVIS+Videvo 296,200 1×10−4 148,100
3) joint training stage CPNet+SSNet Ljoint DAVIS+Videvo 312,000 CPNet:1×10−6; SSNet:5×10−5 156,000

IV. EXPERIMENT

A. Implementation Details

Training Dataset. We use the entire ImageNet dataset for the
CPNet warm-up pre-training. It includes 1.3 million images
with 1000 categories. We use DAVIS and Videvo datasets
for other training stages. They include 156 short video clips
with 29620 frames. The DAVIS dataset has labeled binary
segmentation maps. For ImageNet and Videvo datasets, we
generate saliency maps as pseudo-segmentation maps. As for
pre-processing, ImageNet images are resized to the resolution
of 256×256. The video frames from DAVIS and Videvo
datasets are resized to 256×448 as the input of the SVCNet
and 512×896 as the ground truth (i.e., the upsampling ratio
for the Super-resolution Module is set to 2 at the joint training
stage). All images are normalized to the range of [0, 1].
Color Scribble. We randomly select color scribbles from ab
channels of ground truth images. There is a half probability
to use valid color scribbles in the training and the number
of color scribbles ranges from 1 to 40. At the joint training
stage, color scribbles are only provided for the first frame in a
batch. The following color scribbles are obtained by warping
the previous one with forward optical flows.
Optimization. The optimization details are concluded in Table
I, where we list trained networks, loss functions, training sets,
total training iterations, initial learning rates (LRs), and the
specific iterations when learning rates halved, respectively, in
every training stage. At the start of the joint training stage, we
initialize both CPNet and SSNet with warm-up pre-training
weights. For the remaining layers or blocks, we initialize them
by [92]. The batch size for the warm-up pre-training stages is
4 and it is 1 for the joint training stage per GPU. We use the
Adam optimizer [93] with β1=0.5, β2=0.999. The trade-off
parameter λs is set to 0.1. Both the mask parameter α and
temperature parameter τ are 200. We implement the SVCNet
with the PyTorch framework. We train it on 8 NVIDIA V100
GPUs and 8 NVIDIA Titan Xp GPUs. Considering the parallel
training, it takes approximately 10 days to complete the warm-
up pre-training and another 6 days to complete the joint
training.
Network Architecture. The SVCNet architecture is shown in
Figure 3, where we emphasize special blocks such as short-cut
connections [89], residual block (ResBlock) [94], and residual-
in-residual dense block (RRDB) [95]. We also emphasize the
number of channels. We use LeakyReLU [96] as the activation
function except for the first and second layers. We use instance
normalization [97] only in the Refinement Module.

B. Quantitative Metrics

Generation Quality. We adopt PSNR and SSIM [98] to
calculate pixel-level accuracy and structural similarity be-
tween generated results and ground truth, respectively. For the
scribble-based colorization task, some ground truth scribbles
are given in the validation stage and the colorization becomes
a specific task. Therefore, PSNR and SSIM are proper metrics
to evaluate the generation quality.
Segmentation Performance. We use HRNetV2 + OCR [99],
[100] to calculate the mean intersection over union (mIoU)
of the generated frames on DAVIS semantic segmentation
validation dataset [20]. If a method obtains a higher mIoU
value, it may have less probability to encounter the color
bleeding issue since the segmentation algorithm can better
separate key objects from the colorized image of this method.
Human Preference. We conduct a human preference study on
video colorization results from different methods. There are 10
videos randomly selected from DAVIS and Videvo validation
sets for users to compare. For each video, the human observer
needs to select the best result based on temporal consistency
and color vividness. There are 10 human observers in the
experiment and they can watch the videos many times.

C. Video Colorization Experiments

Experiment Setting. We compare the video colorization
performance of SVCNet and other recent works with similar
targets, which can be categorized into four pipelines:

1) Image colorization and temporal smoothing (as shown in
Figure 2 (a)): CIC [52], LTBC [53], ChromaGAN [57], and
IAC [58] are used as image colorization algorithms; BTC [2]
and DVP [4] are used as temporal smoothing networks;

2) Image colorization and color propagation (as shown
in Figure 2 (b)): DEVC [12] is used to propagate the first
colorized frame to the following frames;

3) Fully-automatic video colorization (as shown in Figure
2 (c)): FAVC [9], 3DVC [10], and VCGAN [11];

4) Scribble-based image colorization and temporal smooth-
ing/color propagation: RUIC [30] is used as the image
scribble-based image colorization method; DVP [4] and DEVC
[12] are used as post-processing methods. Note that, RUIC is
finetuned on video datasets.

We perform experiments on DAVIS [20] and Videvo [21]
validation sets. There are overall 50 video clips and each of
them contains approximately 100 frames. In the experiment,
we use 40 color scribbles for scribble-based methods, which
are randomly extracted from the first frame. The following
scribbles are obtained by warping color scribbles of the first
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Fig. 4. Illustration of video colorization results of SVCNet and other pipelines. The images are extracted from the “paragliding-launch” sample of the DAVIS
dataset and the “YogaHut2” sample of the Videvo dataset, respectively.

frame with forward optical flows. Different pipelines share the
same color scribbles. For the SVCNet, we set the up-sampling
ratio of the Super-resolution module as 2 to obtain results
with a resolution of 512×896 and then resize them to target
resolutions of DAVIS and Videvo datasets. The other methods
run on the same resolution as validation images. The overall
tuning epoch of DVP is set to 25 as default. Note that, FAVC
and DVP automatically crop input images to make side lengths
a multiple of 32. Therefore, we only use valid regions to
calculate quantitative metrics for them. The quantitative results
are concluded in Table II and some samples are illustrated in
Figures 4 and 5.

Colorization Quality. Firstly, from Figure 4, SVCNet results
are more approach to the ground truth than the results of other
methods in terms of the color tone and color naturalness.
For instance, the results from 3DVC, FAVC, and VCGAN
on the “paragliding-launch” sample are less colorful. These

methods do not well balance the video colorization vividness
and temporal smoothness, i.e., their results are too smooth so
they are not colorful enough. Although BTC, DVP, and DEVC
can smooth single-colorized frames, the results are still not
reasonable. For instance, there are obvious color artifacts in
CIC-related results on the “YogaHut2” sample, e.g., the clothes
are colorized in red. Since CIC predicts a color distribution
for each pixel in an image, the output is not always natural
compared with ground truth.

Secondly, there is less color bleeding issue in SVCNet
results than in other methods. For instance, the human is
colorized to blue for CIC + DVP on the “paragliding-launch”
sample since it cannot distinguish the human and the sky.
The hand is colorized to green for 3DVC on the “YogaHut2”
sample since the neighboring green colors of trees affect the
colorization of it. Compared with other methods, SVCNet has
much fewer color bleeding artifacts since it uses a segmenta-
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Fig. 5. Illustration of video colorization results of SVCNet and state-of-the-art scribble-based video colorization methods. The images are extracted from the
“gold-fish” sample of the DAVIS dataset and the “AircraftTakingOff1” sample of the Videvo dataset, respectively.

TABLE II
COMPARISON OF VIDEO COLORIZATION PIPELINES AND THE PROPOSED SVCNET ON DAVIS AND VIDEVO

DATASETS. THE RED, BLUE, AND GREEN COLORS REPRESENT THE BEST, THE SECOND-BEST, AND THE
THIRD-BEST PERFORMANCE, RESPECTIVELY. THE “IC” AND “VC” REPRESENT THE “IMAGE

COLORIZATION METHOD” AND “VIDEO COLORIZATION METHOD”, RESPECTIVELY.

Method Type Color DAVIS Videvo
scribble PSNR ↑ SSIM ↑ mIoU ↑ PSNR ↑ SSIM ↑

1) CIC [52] IC / 22.48 0.9043 0.8419 21.83 0.9024
1) LTBC [53] IC / 23.96 0.9171 0.8945 24.69 0.9272
1) ChromaGAN [57] IC / 23.77 0.9420 0.8879 23.94 0.9392
1) IAC [58] IC / 22.88 0.9422 0.8836 23.99 0.9486
1) CIC + BTC [2], [52] VC / 21.50 0.8935 0.8419 21.05 0.8833
1) LTBC + BTC [2], [53] VC / 22.47 0.9044 0.8899 22.83 0.9105
1) ChromaGAN + BTC [2], [57] VC / 19.91 0.8938 0.8796 16.64 0.8325
1) IAC + BTC [2], [58] VC / 18.40 0.8778 0.8698 15.85 0.8209
1) CIC + DVP [4], [52] VC / 23.30 0.9351 0.8724 22.23 0.9328
1) LTBC + DVP [4], [53] VC / 24.06 0.9425 0.8886 24.75 0.9548
1) ChromaGAN + DVP [4], [57] VC / 23.81 0.9444 0.8800 23.97 0.9451
1) IAC + DVP [4], [58] VC / 22.91 0.9407 0.8936 23.99 0.9503
2) CIC + DEVC [12], [52] VC / 21.64 0.9321 0.8661 21.36 0.9231
2) LTBC + DEVC [12], [53] VC / 22.46 0.9397 0.8688 24.03 0.9513
2) ChromaGAN + DEVC [12], [57] VC / 22.56 0.9429 0.9026 22.40 0.9386
2) IAC + DEVC [12], [58] VC / 22.43 0.9384 0.8712 23.59 0.9479
3) 3DVC [10] VC / 23.49 0.9151 0.8948 24.33 0.9231
3) FAVC [9] VC / 22.98 0.9055 0.8889 23.47 0.9183
3) VCGAN [11] VC / 23.43 0.9133 0.8954 24.73 0.9225
4) RUIC [30] IC ✓ 25.42 0.9456 0.8995 25.02 0.9432
4) RUIC + BTC [2], [30] VC ✓ 21.16 0.8869 0.8900 17.07 0.8279
4) RUIC + DVP [4], [30] VC ✓ 25.82 0.9455 0.9075 24.68 0.9460
4) RUIC + DEVC [12], [30] VC ✓ 24.85 0.9524 0.9002 25.66 0.9583
SVCNet VC ✓ 25.71 0.9565 0.9104 26.30 0.9615

49

3

41

5

SVCNet: 49%
(this work)

FAVC: 2%
VCGAN: 3%

RUIC: 0%

RUIC + DVP: 5%

RUIC + DEVC: 41%

RUIC + BTC: 0%

2

Fig. 6. Human preference study result.
The human preference rate for each
method is marked in the figure. Differ-
ent colors denote different methods.

tion branch to alleviate the problem.
Thirdly, SVCNet obtains better video temporal consistency

than other methods since it aggregates both short-range con-
nections and the long-range connection. It obtains better
temporal consistency than other methods. For pipeline 1),
the videos generated by image colorization and temporal
smoothing methods are not continuous enough, e.g., CIC
+ BTC, CIC + DVP, LTBC + BTC, and LTBC + DVP.
Since image colorization and temporal smoothing are learned
individually, the final outputs are still close to the single-frame
colorized results. For instance, the human is colorized to red
in frame 160 for the CIC results while it turns to gray for
frame 200; but the CIC + BTC cannot alleviate this issue, i.e.,

the results are not temporal consistent enough. For pipeline
2), the videos are smoother than the results from pipeline 1).
However, it exists a similar problem since image colorization
methods and DEVC are not jointly trained. For pipeline 3),
the video continuity is good compared with other methods,
but the results of pipeline 3) are less colorful. For pipeline
4), RUIC + DEVC outperforms the other two methods RUIC
and RUIC + DVP. However, it remains the common problem
of DEVC-based methods, i.e., results highly rely on the first
colorized frame.

Finally, SVCNet better utilizes the given color scribbles than
RUIC. Since only color scribbles of the first frame are given,
they might vanish for far frames. In such circumstances, RUIC
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pipeline 3)

FAVC

pipeline 3)

VCGAN

pipeline 4)

RUIC + DVP

Ground Truth

SVCNet

pipeline 4)

RUIC + DEVC

pipeline 3)

3DVC

Colorization Segmentation Col ⨀ Seg Colorization Segmentation Col ⨀ Seg

Frame 16 Frame 42

pipeline 1)

CIC + DVP

pipeline 1)

LTBC + DVP

pipeline 2)

CIC + DEVC

pipeline 2)

LTBC + DEVC

Fig. 7. Illustration of video colorization and segmentation results of SVCNet
and other pipelines on the “blackswan” sample of the DAVIS dataset.

cannot produce appropriate results, e.g., there are obvious
flickering artifacts in RUIC results on the “paragliding-launch”
sample. Although DVP and DEVC can bring temporal con-
sistency to the results from RUIC, they are not close enough
to the ground truth. We illustrate more examples in Figure 5,
where results of RUIC + DVP and RUIC + DEVC are inferior
to SVCNet in terms of color vividness and accuracy compared
with ground truth.
Colorization Fidelity. According to Table II, SVCNet
achieves better performance in terms of both PSNR and SSIM
values than other methods. It demonstrates that SVCNet can
well use the colors from given color scribbles. Compared
with the state-of-the-art method RUIC + DEVC, SVCNet
additionally adopts short-range connections in the SSNet;
while compared with RUIC + DVP, SVCNet additionally
uses the long-range connection. The short-range connections
include the previous three and leading three single-frame col-
orization results and the last output. The long-range connection
is the information from the first frame colorization result.
Since SVCNet aggregates short-range information, long-range
information, and the output of the current time step, it obtains
higher colorization fidelity.
Human Preference. We select the top-performed methods
FAVC, VCGAN, RUIC, RUIC + BTC, RUIC + DVP, RUIC
+ DEVC and the SVCNet in the human preference study.
The results are shown in Figure 6. It is clear that the pro-
posed SVCNet achieves a better human preference rate than
other methods. The experiment demonstrates that colorization
results from SVCNet are more temporally consistent and
colorful compared with other results.
Color Bleeding Analysis. We further discuss the color bleed-
ing artifacts in this subsection. As shown in Figure 7, the
segmentation algorithm produces the clearest segmentation

SVCNet

(scribble used 

in the paper)

SVCNet

(other 

scribble 1)

SVCNet

(other 

scribble 2)

SVCNet

(other 

scribble 3)

SVCNet

(scribble used 

in the paper)

SVCNet

(other 

scribble 1)

SVCNet

(other 

scribble 2)

SVCNet

(other 

scribble 3)

Frame 5 Frame 10 Frame 15 Frame 20 Frame 25

Frame 20 Frame 25 Frame 40 Frame 65 Frame 100

Fig. 8. Illustration of SVCNet results from different color scribbles. The
images are extracted from the “blackswan” sample of the DAVIS dataset and
the “CoupleRidingMotorbike” sample of the Videvo dataset, respectively. The
input color scribbles are omitted.

map from the SVCNet results. For instance, the contour of
the swan is more continuous for the SVCNet than the other
methods. It represents the key objects are more distinguishable
from other objects for it. In addition, SVCNet achieves the
highest mIoU among all the methods, as concluded in Table
II. It demonstrates that the objects of its results are more
obvious than the other methods, which denotes that SVCNet
has less possibility to encounter color bleeding artifacts. This
is achieved by adding an additional segmentation loss at the
training, where the weights of the colorization branch are
tuned by the segmentation branch.
Colorization Diversity. Since the color scribbles can be
diverse, scribble-based video colorization should be a mul-
timodal application. We illustrate some results from different
color scribbles in Figure 8. It is clear that SVCNet can generate
diverse colors from different input color scribbles.

D. Ablation Study

Experiment Setting. In order to demonstrate the effectiveness
of components of the SVCNet, we define seven ablation study
settings. The training hyper-parameters are unchanged exclud-
ing the ablation study items for each setting. The evaluation
is on the original resolution on DAVIS and Videvo datasets,
where all the settings share the same color scribbles. The
details are concluded as follows:

1) w/o segmentation loss: Drop the segmentation loss LCP
s ;

2) w/o CPNet pre-training: Drop the CPNet warm-up pre-
training stage on video datasets (i.e., only on the ImageNet);

3) w/o short-range connections: Drop the Refinement Mod-
ule of SSNet with all short-range connections (i.e., yabt−3, yabt−2,
yabt−1, yabt+1, yabt+2, yabt+3, and zabt−1);

4) w/o the long-range connection: Drop the Correspondence
Module with the long-range connection (i.e., yab1 );
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TABLE III
SVCNET ABLATION STUDY ON DAVIS AND VIDEVO DATASETS. THE RED COLOR REPRESENTS THE BEST PERFORMANCE.

Ablation study setting Compared item Color scribble DAVIS Videvo
PSNR ↑ SSIM ↑ mIoU ↑ PSNR ↑ SSIM ↑

1) w/o segmentation loss Training scheme ✓ 24.09 0.9378 0.8780 25.04 0.9464
2) w/o CPNet pre-training Training scheme ✓ 19.19 0.8913 0.6464 20.27 0.9067
3) w/o short-range connections Temporal aggregation ✓ 24.60 0.9495 0.8949 25.04 0.9535
4) w/o the long-range connection Temporal aggregation ✓ 24.23 0.9479 0.8919 24.51 0.9511
5) w/o short- and long-range connections Temporal aggregation ✓ 24.01 0.9481 0.8934 24.37 0.9498
6) with 64×128 resolution Resolution ✓ 24.47 0.9522 0.8768 25.26 0.9576
7) with 128×224 resolution Resolution ✓ 24.59 0.9533 0.8960 25.64 0.9589
SVCNet Full SVCNet ✓ 25.71 0.9565 0.9104 26.30 0.9615

2) w/o 

CPNet pre-

training

SVCNet

3) w/o short-

range conn.

Frame 3 Frame 22 Frame 23 Frame 24 Frame 45

4) w/o long-

range conn.

5) w/o short-

and long-

range conn.

SVCNet

6) with 

64×128 

resolution

Frame 5 Frame 15 Frame 25 Frame 35 Frame 45

7) with 

128×224 

resolution

Frame 7 Frame 20 Frame 24 Frame 28 Frame 33

1) w/o 

segmentation 

loss

SVCNet

Fig. 9. Illustration of different ablation study settings. Samples are selected
from the “motocross-jump”, “kite-surf”, and “bike-packing” samples of the
DAVIS dataset, respectively.

5) w/o short- and long-range connections: Drop both short-
range connections and the long-range connection;

6) with 64×128 resolution: Change the input image res-
olution of SVCNet to 64×128. The upsampling ratio of the
Super-resolution Module is changed to 8;

7) with 128×224 resolution: Change the input image res-
olution of SVCNet to 128×224. The upsampling ratio of the
Super-resolution Module is changed to 4.

The quantitative results are concluded in Table III and some
samples are illustrated in Figure 9.
Training Scheme. For settings 1) and 2), we exclude some
parts in the training stages. If dropping the segmentation loss,
there are color bleeding artifacts (e.g., some regions of the
sky are colorized in green), as shown in Figure 9. If dropping
the CPNet warm-up pre-training stage on video datasets, the
colorization is wrong. Training all modules without warm-up
pre-training is extremely difficult. It is because the CPNet can-
not well colorize video frames that have different resolutions

TABLE IV
COMPARISON OF THE NUMBER OF PARAMETERS (Nparam) AND

MULTIPLY ACCUMULATES (MACS) ON A PATCH WITH A RESOLUTION OF
256×448 OR 1024×1792 (MACs256 AND MACs1024) FOR SVCNET.

Module Nparam MACs256 MACs1024
CPNet 91.475M 251.690G 251.690G
Correspondence Module 26.942M 162.102G 162.102G
Refinement Module 346.608K 28.664G 28.664G
Combination Module 7.084M 20.479G 20.479G
Super-resolution Module 306.432K 33.096G 55.292G
SSNet 34.678M 244.340G 266.537G
SVCNet 126.153M 496.030G 518.226G

with images; meanwhile, the SSNet becomes ineffective when
the given colorized frames from the CPNet are not good. In
addition, as concluded in Table III, the mIoU of setting 1) and
results of all metrics of setting 2) decrease obviously.
Temporal Aggregation. For settings 3-5), we do not use some
temporal information. In Figure 9, the colors of frames 22-
24 results of setting 3) are not consistent since short-range
connections are not used. The colors of far frame results of
settings 4) and 5) are also not consistent with the frame 3
result. Since the long-range connection is not used and the
color scribbles easily vanish when there are large motions, the
colors for far frames are distorted. Also in Table III, excluding
temporal information leads to a giant decrease in both PSNR
and SSIM values. The experiment results demonstrate that
both short-range connections and the long-range connection
are significant for the SVCNet.
Resolution. For settings 6) and 7), we change the image
resolution. Though reducing the resolution can accelerate the
inference speed, the performance of SVCNet drops obviously.
Also in most cases, colorization applications do not need
a very quick inference time. Considering the balance of
colorization quality, inference speed, and memory cost, we
use 256×448 as the running resolution.

In conclusion, all the proposed training schemes, temporal
aggregation, and network architecture are significant.

E. Computational Costs

The computational costs for the SVCNet are concluded in
Table IV. Based on the sparsity of color components, the
majority of operations are on a fixed small resolution (i.e.,
256×448). Therefore, the computational costs for all modules
except for the Super-resolution Module remain the same for
different input resolutions. When changing the input resolution
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Grayscale

Color Scribble

CIC

LTBC

DeOldify

SCGAN

IAC

ChromaGAN

CPNet of SVCNet
(with ) 

(colorization)

Ground Truth

CPNet of SVCNet
(with ) 

(segmentation)

RUIC
(with )

LRAC

RUIC
(w/o )

CPNet of SVCNet
(w/o )

truck bread human dragonfly chimpanzee meeting cup television butterfly bird

Fig. 10. Illustration of image colorization results of SVCNet and state-of-the-art methods, where RUIC [30] and SVCNet are scribble-based methods. The first
and the second rows denote the grayscale and color scribbles, respectively. The last and the second last rows are the ground truth and predicted segmentation
maps by SVCNet, respectively. The other rows include the colorization results of different methods. The patches are shown alongside full-resolution images.

to 1024×1792 from 256×448, multiply accumulates (MACs)
only increase by 22.197G, which is only 4.5% of MACs of
256×448 resolution (496.030G). This design makes the SVC-
Net memory-friendly. In addition, using small architectures
for the Refinement Module and the Super-resolution Module is
enough. The sum of their parameters accounts for less than 1%
of the overall parameters of the whole SVCNet. Please refer
to Figure 3 (b) and the base channels for them are 16 and 32,
respectively. Though small architectures are used, they fulfill
the targets well, as shown in Figure 3 (c) and (d), respectively.

F. Image Colorization Experiments

Experiment Setting. In order to further demonstrate the
colorization quality of SVCNet, we compare the CPNet of
SVCNet with the following baselines:

1) Fully-automatic methods: CIC [52], LTBC [53], LRAC
[51], Pix2Pix [54], DeOldify [101], FAVC [9], ChromaGAN
[57], SCGAN [59], IAC [58];

2) Scribble-based method: RUIC [30].
All the methods are trained on ImageNet 1.3 million training

set and evaluated on ImageNet 10000 validation set, as defined
by [51], [52], [59]. All the methods are trained and evaluated
on 256×256 image resolution. We use 40 color scribbles for
SVCNet and RUIC in the experiment.
Qualitative Analysis. The qualitative samples are illustrated
in Figure 10. Firstly, compared with other methods, there are
fewer color bleeding artifacts in the CPNet results (i.e., the
color of an object does not permeate through other objects). It
is because we use a segmentation branch and a segmentation
loss, which helps the network focus on the key objects and
separate them from other objects. In the contrast, there are ob-
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(b) Failure case: There are too many textures in the input video clip. The experiments are conducted on “Festival” and “TimeSquareTraffic” samples from the Videvo dataset.

(a) Failure case: The input video clip is very long and there is scene switching in the full video.

Ground 
Truth

SVCNet

Grayscale

Ground 
Truth

SVCNet

Grayscale

Frame 1 Frame 22 Frame 23 Frame 40 Frame 1 Frame 22 Frame 23 Frame 40

Color 
Scribble

Grayscale

scene 
switching

······

······

Frame 37668 Frame 49451 Frame 49452 Frame 49453

SVCNet ······

······

······

······

Frame 37957Frame 37956Frame 37667Frame 37666

Fig. 11. Illustration of two common failure cases: (a) The input video clip is too long and there is scene switching; (b) There are too many textures. The
frames in sub-figure (a) are from a 1948 grayscale film “The Naked City” with an FPS of 24. The input color scribbles are omitted for sub-figure (b).

TABLE V
COMPARISON OF IMAGE COLORIZATION METHODS AND THE PROPOSED

CPNET OF SVCNET ON THE IMAGENET DATASET.

Method Color scribble PSNR SSIM
CIC [52] / 22.62 0.9153
LTBC [53] / 24.96 0.9464
LRAC [51] / 24.49 0.9229
Pix2Pix [54] / 23.39 0.9386
DeOldify [101] / 23.14 0.9194
FAVC [9] / 22.96 0.9146
ChromaGAN [57] / 23.67 0.9273
SCGAN [59] / 23.93 0.9470
IAC [58] / 24.91 0.9110
VCGAN [11] / 24.58 0.9427
RUIC [30] (w/o s) / 25.69 0.9526
CPNet of SVCNet (w/o s) / 25.74 0.9577
RUIC [30] (with s) ✓ 28.94 0.9640
CPNet of SVCNet (with s) ✓ 31.40 0.9760

vious artifacts for the other methods, e.g., “truck” patches from
LRAC, CIC, LTBC, and “chimpanzee”, “meeting” patches
from RUIC, etc. Secondly, there is fewer color confusion issue
(i.e., the colors are semantically wrong for some objects) in the
CPNet results even when there are no given color scribbles.
For instance, the background of the “dragonfly” sample is
colorized to blue for IAC, DeOldify, and RUIC (w/o s). The
background of the “cup” sample is colorized not consistently
for CIC, IAC, and RUIC (w/o s). The colors of “truck”
from LRAC, CIC, LTBC, and ChromaGAN are not consistent.
However, the colors of these samples are more reasonable for
the CPNet. In conclusion, the proposed CPNet has a stronger
ability to perform scribble-based image colorization, which
serves as a powerful backbone for the SVCNet.
Quantitative Analysis. The quantitative results are concluded
in Table V. On one hand, CPNet obtains better performance
than the state-of-the-art scribble-based image colorization

method RUIC either without color scribbles (w/o s) or with
color scribbles (with s). Especially when using color scribbles,
CPNet largely outperforms RUIC, e.g., 2.46 higher PSNR and
0.0120 higher SSIM. Based on the powerful CPNet, SVCNet
has the potential to colorize videos with high quality. On
the other hand, CPNet outperforms existing methods when
using color scribbles. It is because CPNet can well utilize
the information from the color scribbles to guide the col-
orization. Compared with conventional architectures, SVCNet
directly uses a pre-trained semantic feature encoder to extract
features and has a decoder segmentation branch to predict
the segmentation map, which helps the network address the
color bleeding artifacts. The network designs also contribute
to better performance.

G. Failure Cases and Discussion

The SVCNet can produce high-quality colorful videos by
propagating the color scribbles to the grayscale videos. The
results are often not plausible when: 1) the video clip is very
long and there is scene switching in the full video; 2) there
are too many textures, as illustrated in Figure 11.

Firstly, we use a real legacy video for experiments, as
shown in Figure 11 (a). When we give the color scribbles
for the first frame of a scene (e.g., Frame 37666), the color
styles of results for far frames in the scene (e.g., Frames
37666 and 37957) are consistent with the first frame. However,
when we colorize the far frames (e.g., Frame 49451, which is
approximately 8 minutes later than Frame 37666), the details
are not good. The color style of Frame 49451 is also very
similar to the first colorized frame (i.e., Frame 37666) because
the SVCNet uses only the long-range connection for reference;
however, the styles of the two distinct scenes are not always
similar. We assume that new color scribbles should be given
for far keyframes with a keyframe detection algorithm [102].
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Secondly, when there are a lot of details in grayscale videos,
the SVCNet is hard to colorize the tiny objects, as shown in
Figure 11 (b). In the future, we will develop more powerful
color propagation techniques and make SVCNet robust to
complicated textures.

V. CONCLUSION

In this paper, we present the first scribble-based video col-
orization framework called SVCNet. It includes two sequen-
tial sub-networks called color propagation network (CPNet)
and spatiotemporal smoothing network (SSNet). The CPNet
performs accurate image colorization based on the given color
scribbles. Utilizing two feature encoders, it effectively extracts
semantics and fuses the information of color scribbles and
grayscale images. It also contains two decoder branches,
where one for producing color embeddings and the other for
generating corresponding segmentation maps. By enforcing
the multi-task losses at training, the segmentation branch helps
CPNet alleviate color bleeding artifacts. The SSNet post-
processes the output from the CPNet, which aggregates short-
range connections (neighboring colorized frames), the long-
range connection (the first colorized frame), and information
of the current time step (the current CPNet output) to achieve
good temporal consistency. In addition, we notice that color
embeddings are sparse so we set the majority of operations to
a fixed small resolution and we use a Super-resolution Module
to recover the larger resolution for HD video applications at
the tail of SVCNet. Finally, we compare SVCNet with sev-
eral state-of-the-art image colorization and video colorization
methods. The results demonstrate that SVCNet produces more
realistic results and encounters fewer color bleeding artifacts
than existing methods.
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