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Abstract

Scene Graph Generation (SGG) converts visual scenes
into structured graph representations, providing deeper
scene understanding for complex vision tasks. However, ex-
isting SGG models often overlook essential spatial relation-
ships and struggle with generalization in open-vocabulary
contexts. To address these limitations, we propose LLaVA-
SpaceSGG, a multimodal large language model (MLLM)
designed for open-vocabulary SGG with enhanced spa-
tial relation modeling. To train it, we collect the SGG
instruction-tuning dataset, named SpaceSGG. This dataset
is constructed by combining publicly available datasets and
synthesizing data using open-source models within our data
construction pipeline. It combines object locations, object
relations, and depth information, resulting in three data for-
mats: spatial SGG description, question-answering, and
conversation. To enhance the transfer of MLLMs’ in-
herent capabilities to the SGG task, we introduce a two-
stage training paradigm. Experiments show that LLaVA-
SpaceSGG outperforms other open-vocabulary SGG meth-
ods, boosting recall by 8.6% and mean recall by 28.4%
compared to the baseline. Our codebase, dataset, and
trained models are publicly accessible on GitHub at the
following URL: https://github.com/Endlinc/
LLaVA-SpaceSGG.

1. Introduction

Scene Graph Generation (SGG) is a fundamental scene
understanding task that involves detecting the entities and
predicting their relationships in an image to form a scene
graph (see Figure 1 (a) and (b)). The scene graph can
be formulated as several text tuples of (subject, predicate,
object), where the nodes denote objects and the edges de-
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note relationships between different object pairs, respec-
tively. Since the scene graph is a concise semantic repre-
sentation of an image, it can be an intermediate feature for
complex vision tasks. For instance, it has been applied in
diverse downstream tasks such as visual question answer-
ing [3,12,16,28], image captioning [9,27,30,46,58], image
retrieval [20, 44, 60], etc.

Recent approaches have attempted to generate scene
graphs in a supervised manner, yielding remarkable results.
Nonetheless, we have identified two challenges that con-
strain the overall performance:

1) Open-vocabulary SGG: Existing SGG methods often
require direct supervision with a fixed set of labels and their
generalization ability on open-set images is unsatisfactory;

2) Lack of spatial relations: Since existing SGG datasets
are mainly annotated on 2D images, the annotation progress
mainly focuses on common relationships and neglects 3D
spatial relationships between certain objects.

In pursuit of open-vocabulary SGG, recent approaches,
exemplified by ASMv2 [51], have integrated state-of-the-
art vision-language models like CLIP [42] and LLaVA [32],
leveraging rich and diverse training data encompassing var-
ious modalities. Nonetheless, these methods tend to over-
look the crucial 3D spatial relationships that form integral
elements of SGG. To emphasize spatial relations, Pu et al.
[40] and Li et al. [26] integrated spatially specific blocks to
assimilate spatial correlations and enhance spatial contex-
tual understanding. However, it does not efficiently balance
the original information and new information extracted by
proposed blocks.

To address the two challenges simultaneously, we pro-
pose LLaVA-SpaceSGG, specifically designed to tackle
both open-vocabulary SGG and spatial relationship mod-
eling (see Figure 1 (c)). We have extended the LLaVA-1.5
framework [33, 35] and curated a SpaceSGG instruction-
tuning dataset. Then, we introduce a two-stage training
paradigm to train the LLaVA-SpaceSGG. In the first stage,
we align an image model (e.g., CLIP [42]) with a text model
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(a) Object Detection: aims to localize and classify objects.
(c) Scene Graph Generation (SGG) with enhanced spatial relations: aims
to generate a visually-grounded scene graph, while the training images
are labeled with explicit spatial relations.

(b) Scene Graph Generation (SGG): aims to generate a
visually-grounded scene graph.
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Figure 1. The illustration of different tasks: (a) Object Detection, (b) Scene Graph Generation (SGG), and (c) Scene Graph Generation
(SGG) with enhanced spatial relations. By additionally leveraging spatial relationships, we propose the LLaVA-SpaceSGG framework.

(e.g., Llama 2 [50]), enabling the model to excel in open-
vocabulary SGG, leveraging the vast pre-training datasets.
In the second stage, we refine the model’s comprehension
of region-level spatial relationships, crucial for SGG. This
dual-phase approach comprises a pre-training stage suc-
ceeded by an instruction-tuning phase, akin to ASMv2 [51].
To further enhance spatial understanding, we fully exploit
SGG-related data in the second instruction-tuning phase, in-
corporating both the general SGG instruction-tuning dataset
from [51] and our newly created SpaceSGG dataset.

Our dataset introduces two key improvements. Firstly,
it captures both plane and depth coordinates, enriching the
spatial relationships (such as front-back relationships) be-
tween objects. Specifically, we first use a depth estima-
tion algorithm [57] to generate a depth map from an image,
then construct a 3D scene by [14], and finally extract 3D
SGG from the 3D scene. Secondly, our dataset generates
three distinct data formats: spatial descriptions (SpaceSGG-
Desc), single-turn question answering (SpaceSGG-QA),
and multi-turn conversations (SpaceSGG-Conv) to enhance
the model’s spatial reasoning capabilities. SpaceSGG-
Desc includes both plane and depth SGG descriptions.
SpaceSGG-QA emphasizes the spatial relationships be-
tween two objects by depth comparison and multi-view
questions. SpaceSGG-Conv contains the complete reason-
ing process from an image to SGG based on chain-of-
thought (CoT) multi-turn dialogue [53].

To evaluate the ability of the proposed LLaVA-
SpaceSGG, we conduct experiments on a general Panoptic
Scene Graph dataset (PSG) [55]. To further examine the
spatial understanding ability, we construct a spatial relation
validation dataset, which contains 271 labeled question-
answer pairs on the COCO dataset [30]. Our LLaVA-
SpaceSGG outperforms current state-of-the-art models by
8.6% recall and by 28.4% mean recall in the PSG validation
set. It also outperforms existing methods with respect to an
accuracy of 3.8% in the proposed spatial relation valida-
tion set. Experiments show that LLaVA-SpaceSGG is able

to discover, map, and predict richer spatial relationships
while others do not. And it demonstrates that the SpaceSGG
dataset greatly contributes to improving the model’s under-
standing of spatial relationships.

In summary, there are three main contributions:
1) To enhance spatial understanding in SGG, we collect

the SpaceSGG dataset, along with a novel data generation
pipeline. This dataset integrates both 2D and 3D scene in-
formation, resulting in a more comprehensive representa-
tion of object relations that captures spatial context, object
positions, and depth. This fusion addresses critical limita-
tions in existing SGG datasets, which often lack detailed
spatial information.

2) Utilizing the SpaceSGG dataset, we develop LLaVA-
SpaceSGG, a multimodal large language model designed
specifically for open-vocabulary SGG tasks. In order to en-
hance the adaptation of MLLMs to the SGG domain, we
propose a task-specific two-stage training strategy. This
methodology notably enhances the model’s capacity to in-
terpret spatial relationships within intricate visual contexts.

3) The LLaVA-SpaceSGG model showcases the state-
of-the-art performance on the well-established PSG valida-
tion set, surpassing current methods in recall and mean re-
call. Furthermore, to evaluate the model’s proficiency in
abstracting spatial relationships, we present a novel spatial
relation validation set. Our model attains reliable and con-
sistent performance on this new benchmark, underscoring
its efficacy in capturing spatial dynamics.

2. Related Work
2.1. Scene Graph Generation (SGG)

SGG has become increasingly important in the computer
vision area. The interest in this field was initially sparked by
Lu et al. [35], which focuses on the relationships between
objects that can be abstractly represented by a graph of
nodes and edges. Such scene graphs are immensely helpful
for models to understand interactions among objects within
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Figure 2. SpaceSGG dataset construction pipeline. We utilize both SGG description and spatial relationships, where we generate 3 types
of data: spatial scene detailed descriptions (SpaceSGG-Desc), QA (SpaceSGG-QA), and multi-turn conversations (SpaceSGG-Conv).

images. However, early works [10, 27, 54, 56] in this field
overly simplified the scenes used for training, containing
only a few objects and thus leading to an over-concentration
of object relationships, which hindered the model’s abil-
ity to learn generalized representational knowledge. Sub-
sequently, Yang et al. [55] proposed conducting a com-
prehensive segmentation of the entire image and attempted
to identify all relevant relationships between the resulting
segments, thereby enriching the complexity of objects and
their relationships. We aim to improve the performance of
SGG by focusing on a fundamental yet underexplored as-
pect: spatial relationships. These relationships, which natu-
rally exist between all objects, play a crucial role in under-
standing scenes. By addressing this gap, our method com-
plements traditional approaches and significantly enhances
model performance in SGG tasks.

2.2. Depth Estimation and 3D Reconstruction

Monocular depth estimation (MDE) has evolved signifi-
cantly from early methods, which relied on handcrafted fea-
tures and struggled with complex scenes due to their de-
pendence on explicit depth cues [7, 17]. The introduction
of deep learning transformed MDE, with Eigen et al. [15]
pioneering a multi-scale fusion network for depth regres-
sion. Subsequent studies reframed regression as a classifi-
cation task [4, 29], enhancing accuracy through improved
priors and objective functions [23, 45]. For 3D reconstruc-
tion, classical methods computed dense depth per view [43]
and used techniques like Delaunay triangulation [22] and
Poisson surface reconstruction [21]. Recent deep learning
approaches, such as ATLAS [37], NeuralRecon [48], and
TransformerFusion [5], bypass traditional depth estimation
by backprojecting 2D features into 3D space, though they

incur high computational costs. These advancements have
significantly improved the reconstruction of spatial scenes
and the generation of inter-object spatial relationships.

2.3. Multimodal Large Language Models (MLLM)

In recent years, significant breakthroughs have been
made in visual scene understanding. Models trained on
large-scale image-text pairs [42] have demonstrated pow-
erful performance in various vision tasks. Researchers
have further enhanced the model’s performance [25, 58],
enabling Vision Language Models (VLM) to be applied
in an expanding array of fields. Recently, the remark-
able capabilities of Large Language Models (LLM) have
led to a proliferation of LLM-based multimodal models
[6, 11, 12, 24, 34, 62]. These MLLM inherit robust under-
standing and reasoning abilities. Additionally, designing
prompts [6, 19, 53] enables MLLMs to reason about previ-
ously unseen tasks, and adding extra information [8,18, 51]
to inputs can enhance the MLLM’s performance on tasks.
We attempt to leverage this capability of MLLMs and have
collected a dataset that can be utilized for these models,
which we call the SpaceSGG dataset. This format is in-
tended to enhance the model’s understanding of both scenes
and space, integrating text generation, object localization,
relationship understanding, and spatial comprehension.

3. Methodology

To equip the model with scene graph generation capa-
bilities and enhance spatial relation recognition, we first
introduce the data construction pipeline for building the
SpaceSGG dataset, which integrates spatial and scene graph
information. Building upon this, we then detail the training
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Figure 3. 3D Information Extraction: We retrieve the spatial lay-
ering distribution of the input images with the assistance of object
detectors and depth estimator.

paradigm for LLaVA-SpaceSGG.

3.1. SpaceSGG Dataset Construction

We hypothesize that the model’s inaccurate predictions
of spatial relationships stem from a lack of relevant spatial
information annotations and the inadequate integration of
spatial and scene graph information. To address this, we de-
sign a two-stage data generation process, as shown in Figure
2. In the first stage, scene graph description (Section 3.1.1)
and spatial layout are extracted from the 2D image (Section
3.1.2). In the second stage, the scene graph triplets and spa-
tial layout are fused into a spatial scene graph description
(Section 3.1.3), followed by spatial QA and spatial multi-
turn conversations (Section 3.1.4). In this paper, we adopt
the Llama 3 70B [2] as the data generator.

3.1.1 Scene Graph Description Generation

Scene graph description provides a detailed description,
which serves as an intermediate state for the model to fur-
ther generate a layered, comprehensive description of the
image. To achieve this goal, we query GPT-4V [1] to gener-
ate responses that link the objects and predicates mentioned
in the generated response to specific regions within the im-
age, by following work [51].

3.1.2 Spatial Relations Extraction

To ensure that the spatial scene graph data contains more ac-
curate spatial relationships, we need to reconstruct 3D spa-
tial relationships from 2D images. We developed a pipeline
that converts 2D images into depth maps and then into
3D point clouds. Firstly we apply the depth-anything [57]
model as our base depth detector and align the relative depth
with each detected object (see Figure 3). Then, a camera
calibration [13] has been appended including two parts: 1)
estimating intrinsic parameters to convert depth maps into
3D point clouds, and 2) ensuring that scene relationships are
consistent. This allows us to create a rotation matrix to con-
vert the point cloud for each object. The point cloud data are
saved accordingly with the objects for further conversion.

Algorithm 1 Relative Spatial Relation of Object A and B

Input: object A, object B, image
depthmap← DepthAnything(image)
pointcloud← CameraCalibration(depthmap)
points A← pointcloud[object A]
points B← pointcloud[object B]
z range a← [points A.Z min, points A.Z max]
z range b← [points B.Z min, points B.Z max]
if z range a.min < z range b.min and z range a.max >
z range b.max then

z range a covers z range b
end if
record the relative spatial relation of objects A and B.

Algorithm 2 Devide objects into layers

Input: objects, image
Initialize layer list.
for object A in objects do

Initialize basic layer element flag with True.
for object B in objects do

if object A is overlapping with object B then
basic layer element flag← False

end if
end for
if basic layer element flag then

Add object A into layer list
end if

end for
Sort objects in layer list with depth
for object A in layer list do

Initialize sub layer list of A
for object B in objects do

if object A is covered by object B then
Add object B into sub layer list of A

end if
end for

end for
record the layer list and corresponding sub layer list.

3.1.3 SpaceSGG Description Generation

After stage 1, we focus on naturally integrating spatial lay-
out and scene graph information in stage 2. We define
explicit spatial layering to cluster and organize objects in
space using the following algorithms (see Algorithm 1 and
Algorithm 2): 1) one object with a depth range (by retriev-
ing the minimum and maximum z-axis value) enclosed in-
side other objects’ depth range is considered covered by
others; 2) objects not covering any other objects are con-
sidered to be the basic objects representing an individual
layer; 3) we check all the objects and select all the basic ob-
jects as the first elements in each layer; 4) we check all the
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Figure 4. An example of SpaceSGG-Desc, SpaceSGG-QA, and
SpaceSGG-Conv generation process.

other objects and assign them to different layers, such that
larger objects may be added to multiple layers. This defi-
nition emphasizes the spatial information of objects for fur-
ther processing. Then, we use a large language model [2] to
reorganize the language from the previous step, emphasiz-
ing the spatial position information of objects and express-
ing the hierarchical information of objects in space. More
specifically, we prepare the structural scene graph descrip-
tion (See Figure 4 top left) and the spatial relations after
spatial layering (See Figure 4 top right) as input, and ap-
ply well-designed instructions (See Figure 4 blue regions)
for prompting LLMs. The final output is grouped by layers
termed SpaceSGG-Desc.

3.1.4 SpaceSGG QA and Conversation Generation

To enhance the model’s spatial understanding and scene
graph generation, we generate spatial question-answer
pairs from scene graph descriptions, including single-turn
QA (SpaceSGG-QA) and multi-turn conversation data
(SpaceSGG-Conv) using LLM queries. Prompts (see Fig-
ure 4 bottom) are designed to split scene graph descriptions,
triplets, and object depth distributions into questions about
front-back judgment, up-down judgment, multi-object sort-
ing, occlusion, and more (see Supplementary Materials A
for examples). The SpaceSGG dataset combines spatial de-
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Figure 5. Our proposed training paradigm and used training
dataset.

scriptions (SpaceSGG-Desc), single-turn QA (SpaceSGG-
QA), and multi-turn conversations (SpaceSGG-Conv), en-
compassing 20K diverse scenes and their spatial structures.

3.2. Training Paradigm

To enhance spatial SGG knowledge transfer to MLLMs,
we propose a specialized training paradigm inspired by
LLaVA-1.5 [34] and ASMv2 [51]. As shown in Figure 5,
our approach consists of two stages, each with a pre-training
and instruction-tuning phase. In the first stage, we align
modality features using image-level datasets, following the
LLaVA-1.5 [34] setup. In the second stage, pre-training
uses region-level datasets to refine feature discovery and
grounding, while instruction-tuning combines our proposed
dataset with existing SGG data to enhance the model’s un-
derstanding of scene relationships and spatial layouts. The
datasets used in each stage are detailed below.

In the first stage, we use image-level datasets CC3M [46]
and LLaVA-Instruct [34]. For the second stage, we
use region-level datasets CC12M [46], AS-1B [52], and
GRiT [39] to enhance the model’s ability to discover sub-
tle features and improve grounding. Unlike ASMv2, which
incorporates 4M images from additional datasets like OCR-
VQA [36] and TextVQA [47], our instruction-tuning phase
focuses solely on SGG datasets, including AS-V2 [51] and
the proposed SpaceSGG dataset.

4. Experiments
We conduct both quantitative and qualitative analysis

with state-of-the-art methods on the public PSG dataset [55]
and the proposed spatial relation validation set. Then, we
design several ablation study settings to show the effective-
ness of our training paradigm and SpaceSGG dataset.

4.1. Validation Sets and Metrics

PSG Validation Set. We use the PSG dataset [55] to
evaluate the open-vocabulary SGG capabilities of existing
models. The dataset includes 49K images and 56 relation-
ships, six of which are positional (e.g., over, in front of,
beside, on, in, attached to). We evaluate both closed-set
methods [31, 49, 54, 55, 59] and open-set methods [51, 61].

Spatial Relation Validation Set. To assess spatial un-
derstanding, we use the proposed spatial relation validation
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Model Recall mRecall

Close-ended SGG
IMP 16.5 6.5
MOTIFS 20.0 9.1
VCTree 20.6 9.7
GPSNet 17.8 7.0
PSGFormer 18.6 16.7
Open-ended SGG
TextPSG 4.8 –
ASMv2 14.2 10.3
LLaVA-SpaceSGG 15.43 13.23

Table 1. Open-vocabulary SGG performance comparison between
our model and other specialist models. The red denotes the best
results across all methods.

set. We randomly select 30 images from COCO-Val-2017
and generate two types of questions (QA and multi-turn
conversations) using the data generation pipeline in Section
3.1.4. These are manually annotated as single-choice QA
with factual corrections, resulting in 271 questions. This
benchmark evaluates the model’s spatial understanding of
scenes.

Metrics. Following [51, 55, 61], we report triplet Recall
and mean Recall (mRecall) for each predicate category in
the open-vocabulary SGG task. A scene graph consists of
triplets (subject, predicate, object), and a triplet is consid-
ered correct if the phrase labels are accurate and the subject
and object locations match the ground truth with an Inter-
section over Union (IoU) greater than 0.5. Recall and mRe-
call are then computed as follows:

Recall =
Number of predicates

Total number of ground truth relationships
. (1)

mRecall =
1

N

N∑
i=1

Recall (i ∈ relation classes). (2)

4.2. Comparison with SoTA Methods

To test the effectiveness of our SpaceSGG dataset and
training method, we compared LLaVA-SpaceSGG with
state-of-the-art models [31,49,51,54,55,59,61] on the PSG
[55] dataset and our proposed spatial relation validation set.

4.2.1 PSG Validation Set

We compare our model on the PSG validation set under
the open-vocabulary SGG setting against open-set mod-
els [51, 61] and closed-set models [31, 49, 54, 55, 59]. As
shown in Table 1, our model achieves state-of-the-art per-
formance, outperforming ASMv2 by 8.6% in Recall and

Model Accuracy (%)

Random Choice 25.00
LLaVA-1.5-13B 45.13
ASMv2-13B 50.52
LLaVA-SpaceSGG 52.48

Table 2. Comparison of model accuracies for spatial understand-
ing tasks. Our model outperforms established benchmarks.

28.4% in mRecall. Against closed-set models, it demon-
strates strong performance with a recall of 15.43 and a mean
recall of 13.23.

As shown in Figure 6 (bottom example), TextPSG of-
ten generates redundant relationships. However, our model
produces concise scene graphs with accurate spatial rela-
tions (e.g., “in front of,” “inside of,” “beside”), leading to
higher recall. Compared to ASMv2, our model captures
more nuanced object relationships, enriching scene graphs
and improving scene understanding. Additional results are
provided in Supplementary Materials B.

4.2.2 Spatial Relation Validation Set

To validate the spatial capabilities of LLaVA-SpaceSGG,
we compare its spatial relationship prediction accuracy with
state-of-the-art open-source MLLMs [33, 51] on our spatial
relation validation set. As shown in Table 2, our model out-
performs existing methods, with ASMv2-13B [52] being
the closest competitor due to its use of scene graph data,
though it struggles with 3D spatial contexts.

Figure 6 (top example) illustrates that, compared to
TextPSG and ASMv2, our method captures more detailed
spatial relationships, such as front-back orientations (blue)
and distinctions between terms like “on the left,” “beside,”
“attached to,” “on,” and “over” (purple). This demonstrates
the value of integrating high-quality spatial and scene graph
data, which current state-of-the-art models lack.

4.3. Ablation Studies

In this section, we conduct ablation studies to prove the
effectiveness of our training paradigm and our proposed
SpaceSGG dataset. All ablation settings can be found in
Figure 7. We first compare the effectiveness of the train-
ing paradigm in three settings (see Figure 7 ablations on
training paradigms). Then, we conduct five ablation stud-
ies to validate the effectiveness of our proposed SpaceSGG
dataset (see Figure 7 ablations on data combinations).

4.3.1 Comparison on Different Training Paradigms

We conduct experiments under three training paradigms to
evaluate the interaction of our SpaceSGG dataset with other
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Figure 6. Qualitative result of open-vocabulary SGG, particularly from traditionally state-of-arts models. Note that the cyan-coloured
predicate denotes a precise front-back relationship.

data, as shown in Table 3. The LLaVA-SpaceSGG-ab-train-
1 setting performs worse than LLaVA-SpaceSGG, with a
6% drop in recall, 21.9% in mean recall, and reduced spa-
tial validation accuracy, highlighting the benefits of mix-
ing SpaceSGG with the AS-V2 dataset during stage 2 in-
struction tuning. LLaVA-SpaceSGG-ab-train-2, based on
an additional SFT phase, also underperforms, demonstrat-
ing the efficiency and effectiveness of our two-stage train-
ing paradigm. Lastly, LLaVA-SpaceSGG-ab-train-3, which
uses the existing ASMv2 training approach not tailored for
SGG, achieves lower performance, confirming the superior-
ity of our training design for SGG tasks.

4.3.2 Comparison on Different Data Combinations

To validate the effectiveness of the proposed SpaceSGG
dataset, we conducted an ablation study by exclud-
ing specific terms from the SpaceSGG dataset to cre-
ate five settings. First, LLaVA-SpaceSGG-ab-train-1,
trained without the SpaceSGG dataset, shows reduced
performance on the PSG validation set and a signif-
icant drop in the spatial benchmark, emphasizing the
dataset’s importance. Second, LLaVA-SpaceSGG-ab-data-
1, LLaVA-SpaceSGG-ab-data-2, and LLaVA-SpaceSGG-
ab-data-3 perform worse than the full model, as shown in
Table 4, underscoring the value of data combination. Third,
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Figure 7. We conduct two types of ablation studies: training
paradigm and data combination.

Ablation Setting Recall mRecall Accuracy (%)

LLaVA-SpaceSGG
-ab-train-1

14.41 10.32 1.47

LLaVA-SpaceSGG
-ab-train-2

13.97 10.2 50.52

LLaVA-SpaceSGG
-ab-train-3

14.2 10.3 45.7

LLaVA-SpaceSGG 15.43 13.23 52.48

Table 3. We conducted ablation studies based on different training
stages. For the specific training set-ups of various settings, please
refer to Figure 7.

LLaVA-SpaceSGG-ab-data-4 and LLaVA-SpaceSGG-ab-
data-5, which include SpaceSGG-QA and SpaceSGG-Conv
alongside SpaceSGG-Desc, achieve higher spatial bench-
mark accuracy but lower Recall and mRecall than the base-
line, which better balances these metrics.

4.3.3 Comparison on Different Generative Models in
Pipeline

To evaluate the role of data generator in the proposed
pipeline, we replaced the default Llama 3 70B [2] with al-
ternatives, including Qwen2.5 72B [41] and GPT-4o [38].
The results are shown in Table 5, which demonstrate that
the data quality remains consistent across different gener-
ative models, with performance on Open Vocabulary SGG
and the Spatial Validation set varying minimally compared
to the final chosen model (i.e., Llama 3 70B). These findings
suggest that the choice of generative model has a negligible
impact on overall data quality.

Overall, these results demonstrate that the spatial and
SGG information in our dataset is highly effective and sig-

Ablation Setting Recall mRecall Accuracy (%)

LLaVA-SpaceSGG
-ab-data-1

14.86 10.92 12.74

LLaVA-SpaceSGG
-ab-data-2

14.53 11.07 37.21

LLaVA-SpaceSGG
-ab-data-3

14.24 12.27 4.41

LLaVA-SpaceSGG
-ab-data-4

14.39 11.26 53.39

LLaVA-SpaceSGG
-ab-data-5

14.5 10.2 24.03

LLaVA-SpaceSGG 15.43 13.23 52.48

Table 4. We experimented with different mixing ratios of our gen-
erated data. The red, blue, and green colors denote the best, the
second highest and the third highest results, respectively. For de-
tailed experimental settings, please refer to Figure 7.

Ablation Setting Recall mRecall Accuracy (%)

LLaVA-SpaceSGG
-ab-Qwen2.5

14.22 9.53 51.68

LLaVA-SpaceSGG
-ab-GPT-4o

13.99 10.94 53.725

LLaVA-SpaceSGG
(Llama3)

15.43 13.23 52.48

Table 5. We experimented with different generated data by gener-
ative models.

nificantly enhances the model’s performance on SGG tasks.

5. Conclusions
In this paper, we tackle the problem of open-vocabulary

scene graph generation by enhancing the spatial relations.
Since most of the existing datasets often overlook 3D re-
lations in SGG, we propose a data generation pipeline that
integrates both 2D and 3D scene information to obtain more
comprehensive relations. It results in 10K spatial scene de-
tailed descriptions, 20K question answers, and 20K multi-
turn conversations. Built upon it, we present the LLaVA-
SpaceSGG model. Specifically, we explore a task-specific
training paradigm, which contains two stages that improve
the model’s ability to perceive spatial relations in complex
visual scenes. Finally, we compare the proposed LLaVA-
SpaceSGG on a well-known PSG dataset and our proposed
spatial relation validation set. The experiment results show
that LLaVA-SpaceSGG surpasses the current state-of-the-
art models in the open-vocabulary SGG task, achieving an
8.6% improvement in recall and a 28.4% improvement in
mRecall. It also performs better than other MLLMs in pro-
ducing spatial relations. In the future, we aim to further
enhance the model’s visual understanding and reasoning ca-
pabilities by using high-quality and diverse annotations.
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