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Abstract

Multimodal Large Language Models (MLLM) have enabled
a wide range of advanced vision-language applications, in-
cluding fine-grained object recognition and contextual under-
standing. When querying specific regions or objects in an im-
age, human users naturally use “Visual Prompts” (VP) like
bounding boxes to provide reference. However, no existing
benchmark systematically evaluates the ability of MLLMs to
interpret such VPs. This gap raises uncertainty about whether
current MLLMs can effectively recognize VPs, an intuitive
prompting method for humans, and utilize them to solve
problems. To address this limitation, we introduce VP-Bench,
aiming to assess MLLMSs’ capability in VP perception and
utilization. VP-Bench employs a two-stage evaluation frame-
work: Stage 1 examines models’ ability to perceive VPs in
natural scenes, utilizing 30K visualized prompts spanning 8
shapes and 355 attribute combinations. Stage 2 investigates
the impact of VPs on downstream tasks, measuring their ef-
fectiveness in real-world problem-solving scenarios. Using
VP-Bench, we evaluate 28 MLLMs, including proprietary
systems (e.g., GPT-40) and open-source models (e.g., In-
ternVL3 and Qwen2.5-VL). In addition, we provide a com-
prehensive analysis of factors affecting VP understanding,
such as variations in VP attributes, question arrangement, and
model scale. VP-Bench establishes a new reference frame-
work for studying MLLMs’ ability to comprehend and re-
solve grounded referring questions.

Datasets — https://github.com/Endlinc/VP-Bench

Introduction

The emergence of multimodal large language models
(MLLM) (OpenAl 2023, 2024; Liu et al. 2023) has spurred
research into their applications across diverse downstream
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tasks. For example, a user can verbally instruct the model to
recognize furniture in indoor 3D scenes (Zhou et al. 2024b;
Zhang et al. 2024c; Zhou et al. 2024a), ground wild an-
imals in their natural environment as depicted in an im-
age (Rasheed et al. 2024; Zhang et al. 2024a), use exter-
nal knowledge to determine a piece of furniture’s brand and
price, and provide insights into the habits of those wild ani-
mals. Beyond object detection via natural-language queries,
researchers have explored MLLMSs’ ability to interpret
user-drawn annotations (e.g., freehand regions) and iden-
tify interactions involving target instances in context (Cai
et al. 2024; Fu et al. 2024). Consequently, visual prompts
(VP), graphical cues such as bounding boxes and alphabet
tags, have emerged to direct model attention, offering an in-
tuitive alternative to verbal descriptions. However, MLLMs
still underperform human annotators in grounded refer-
ring tasks with VPs. To quantify this gap, ViP-Bench (Cai
et al. 2024) was introduced, comprising 303 image—question
pairs across eight VP types in practical scenarios (e.g.,
OCR, mathematical reasoning). Although ViP-Bench pro-
vides valuable insights into region reasoning, it does not as-
sess, first, how perceptible different VP styles are to mod-
els. For example, while bounding boxes are ubiquitous,
their low-contrast or overly thin edges may be difficult for
models to detect, limiting task accuracy. Moreover, it re-
mains unclear whether adding distinctive corner markers to a
bounding box VP would further enhance performance. Sec-
ond, how variations in VP design affect downstream perfor-
mance. For example, consider a lung region that is suspected
to contain a malignant lesion. Is the application of an addi-
tional overlaying VP on this area more effective in directing
the model’s attention compared to specifying the region’s lo-
cation within the verbal instruction, while still maintaining
the contextual information?

To address these questions, we conduct a comprehensive
review of prior studies (Cai et al. 2024; Fu et al. 2024; Zhang
et al. 2024a; Rasheed et al. 2024; Yang et al. 2023) to catego-
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Figure 1: Overview of the VP-Bench Dataset. VP-Bench introduces a two-stage evaluation framework: (1) Model Perception,
which assesses general VP recognition capabilities using 30K visualized VPs spanning five question types; and (2) VP Effect
on Downstream Tasks, which evaluates the impact of visual prompts on various downstream applications. All questions follow
a multiple-choice format, but the full list of options is not displayed due to space limitations.

Benchmark #Images # VP Domains Debias
SoV 119 ~5 1 No
ViP-Bench 303 8 1 No
VP-Bench 34267 355 4 Yes

Table 1: Comparison of three VP-related benchmarks. We
list the number of images, number of VP attribute combina-
tions, the image domains covered, and whether each dataset
includes debias questions.

rize commonly employed VP shapes and their correspond-
ing variants, which we subsequently define as attributes.
We classify VP shapes into eight categories: tag, bounding
box, arrow, mask, contour, oval, point, and scribble. Each
category shares general attributes such as line width and
color, and may also incorporate shape-specific attributes,
including style or content format. A detailed overview of
the VP shapes and their associated attributes is provided
in the supplementary materials. In total, our proposed VP-
Bench encompasses 355 unique VP attribute permutations.
The benchmark consists of more than 30,000 distinct im-
age—question pairs, constructed to evaluate core VP capa-
bilities, including existence, enumeration, referencing, and
spatial localization. This component constitutes Stage 1 of
VP-Bench. Furthermore, to examine the influence of VP
on downstream task performance, we introduce six tasks
that incorporate VP reasoning as a second stage, thereby
reflecting the model’s ability to leverage VP reasoning in
real-world problem-solving contexts. Additional examples
from the benchmark are provided in Figure 1, and a concise
comparison between VP-Bench and other VP-related bench-
marks is presented in Table 1.

We evaluate a range of popular MLLMs on our VP-
Bench, including proprietary systems (e.g., GPT-40) and
open-source models (e.g., InternVL3 and Qwen2.5-VL). In
Stage 1, we analyze the influence of factors such as in-
struction arrangement, model parameters, VP shapes, and
attributes on model performance. In Stage 2, we examine the
models’ capabilities across various VP-enabled downstream
tasks, evaluating their ability to integrate visual cues with
textual context, distinguish fine-grained object features, and
leverage domain-specific knowledge. Moreover, we comple-
ment quantitative metrics with qualitative analyses to high-
light each model’s interpretability and reliability in real-
world scenarios. This comprehensive evaluation not only
benchmarks current capabilities but also identifies potential
areas for improvement, thereby informing future research in
multimodal interaction and model interpretability.

To summarize, our contributions are as follows:

* We introduce VP-Bench, a two-stage evaluation frame-
work for assessing MLLMs. Stage 1 measures VP per-
ception capability in natural scenes, while Stage 2 evalu-
ates the ability to integrate VP understanding for practi-
cal problem-solving. Compared to existing benchmarks,
our evaluation is significantly more comprehensive and
includes over 100 times as many images.

* In stage 1, we examine the effects of 355 attribute com-
binations across eight VP shapes, covering a scale more
than 40 times larger than previous studies. In Stage 2,
we assess six VP-enabled downstream tasks, offering a
comprehensive reference for real-world applications.

* Our results highlight the critical role of VP shape
in model performance. Regular shapes (e.g., bounding
boxes, ovals) are generally more efficient than irregular
ones (e.g., masks, contours), even though the latter pro-



vide finer spatial details. Including VP shape descriptions
in prompts further improves contextual understanding.
Selecting VP shapes suited to the application scenario
is more impactful than relying on the model’s preferred
shape in a general scenario.

Related Works
Multimodal Large Language Models

Building on the recent success of neural language pro-
cessing, particularly through LLM approaches, researchers
have increasingly integrated visual understanding and rea-
soning to expand these models’ capabilities (Chen et al.
2022; Huang et al. 2023; OpenAl 2023; Li et al. 2023; Liu
et al. 2023). Several studies have introduced visual instruc-
tion tuning (Liu et al. 2023) and specialized architectures
(Li et al. 2023) for MLLMs, leading to significant advance-
ments in image comprehension and common-sense reason-
ing. However, many existing MLLM:s lack dedicated models
or data designs for referring expressions or location-based
referencing. Consequently, some researchers have adopted
mask encoders to focus attention on specific regions (Guo
et al. 2024), while others craft targeted text prompts to high-
light region (Wang et al. 2024b). For instance, RegionGPT
(Guo et al. 2024) and LLaVA-Grounding (Zhang et al.
2024a) employ additional mask encoders to improve loca-
tion comprehension, though this adds computational over-
head and demands retraining when introducing newer base
models or additional VP shapes. Alternatively, approaches
such as SoM (Yang et al. 2023), ViP-LLaVA (Cai et al.
2024), and ControIMLLM (Wu et al. 2024) demonstrate that
sketching VPs directly on images can substantially enhance
various downstream region-referring tasks. Yet, evaluations
of these models’ handling of visually marked images have
largely been qualitative, and comprehensive quantitative as-
sessments across diverse region-referring tasks remain lim-
ited.

MLLM Benchmarks

Benchmarking MLLMs is crucial for exposing model limi-
tations and guiding future development (Yue et al. 2024; Yu
et al. 2024; Meng et al. 2025; Ying et al. 2024; Liu et al.
2024; Guan et al. 2024). Although many existing bench-
marks assess perception and reasoning, they largely em-
phasize image-level tasks. A few incorporate referring ex-
pression questions (Wei et al. 2024; Zhang et al. 2024a;
Li et al. 2025), yet often neglect the role of VPs in visual
understanding. For instance, RefCOCO (Kazemzadeh et al.
2014) evaluates referring expression capabilities but lacks
VP-oriented image design, while HC-RefLoCo (Wei et al.
2024) extends expression length without addressing the con-
tribution of VPs to regional comprehension in MLLMs. Re-
cently, researchers have worked on developing VP-oriented
benchmarks, such as the SoV (Zhang et al. 2024b) validation
dataset and ViP-Bench (Cai et al. 2024), to provide a more
thorough evaluation of VP cognition. However, these bench-
marks still fall short when it comes to assessing the impact
of VP on MLLM awareness and its effect on downstream

Key Statistics
Statistic Number
Total samples 38,932
Total images 34,267
VP Properties
Shapes 8
Attributes 78
Colors 5

Debias Question

Without Visualized VP 4.5%
Incorrect Model VP Instruction 8%

Table 2: Key statistics for the dataset. This table provides an
overview of the total number of samples, images, and tasks,
as well as the debias question amount over the total bench-
mark.

tasks. For instance, while ViP-Bench offers a relatively com-
prehensive evaluation of VPs, it does not fully address the
variations in VP shapes, attributes, and their effectiveness.
These factors are crucial to understanding how different VPs
influence MLLMs’ visual comprehension and their potential
to improve downstream task performance.

In contrast, our VP-Bench combines a broader range of
VP shapes, attributes, and colors with a thorough examina-
tion of how VPs affect MLLM performance on various tasks.
This comprehensive approach enables a more detailed as-
sessment of model capabilities, providing insights into how
VPs can be optimized for better task outcomes.

VP-Bench
Overview

VP-Bench is designed to assess the perception of VPs by
MLLMs and to evaluate the impact of VPs on downstream
task performance. Specifically, VP-Bench comprises 34,267
images and 38,932 multiple-choice questions. In construct-
ing VP-Bench, we meticulously categorized VP shapes and
attributes and developed a two-stage evaluation protocol.
The Stage 1 data curation process assesses VP perception,
while the Stage 2 data curation process examines the influ-
ence of VPs on models’ regional perception in downstream
tasks.

Compared to existing VP-related benchmarks, VP-Bench
introduces several key improvements (see Table 1). First,
by incorporating a substantially larger set of test samples,
VP-Bench covers an extensive range of VP attribute combi-
nations and diverse grounded referring expression tasks. In
Stage 1, it evaluates MLLMSs’ perception across all 355 VP
attribute combinations, exceeding the scope of other bench-
marks by more than 40 times. This diversity compels mod-
els to develop a deeper understanding of visual information
across various VP types. Second, in Stage 2, we determine
the optimal VP combinations for each model and employ
them to evaluate six downstream tasks within grounded re-
ferring scenarios, a critical gap that previous VP-focused
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Figure 2: An illustration of our pipeline for data collection. Stage 1 is used to determine the general capabilities of MLLMs in
recognizing VPs, while Stage 2 clarifies the impact of using VPs on downstream tasks.

frameworks have yet to fully address. Additionally, we intro-
duce debias questions, where either the images lack the VP
type mentioned in the question or all substantively descrip-
tive answer choices are incorrect (see Figure 2) to mitigate
unreliable conclusions arising from MLLMs’ hallucinations
regarding VP presence. Detailed statistics of VP-Bench are
provided in Table 2.

Leveraging the rich data available in VP-Bench, our an-
alytical framework enables a comprehensive evaluation of
both VP perception and VP-based referring tasks. The top-
down hierarchical structure of VP attributes allows for com-
parative analyses of models’ perception capabilities across
various attributes. Moreover, the diverse downstream refer-
ring expression tasks facilitate performance estimation in
practical scenarios, helping to delineate in-domain from out-
of-domain tasks. Finally, the evaluation samples can be used
to assess task learning difficulty, offering valuable insights
for optimizing model training and dataset design. A detailed
data curation breakdown is provided in the complementary
material.

Visual Prompt Description

The VP description is designed to explicitly verbalize the
spatial cues conveyed by visual prompts, rather than rely-
ing on the model to infer their meaning solely from the im-

age. As summarized in Table 8, each VP shape encodes a
distinct type of spatial signal (e.g., region extent, outline).
However, without a corresponding textual description, these
cues remain implicit and may be underutilized by current
MLLMs. To address this gap, we propose a unified VP de-
scription scheme that converts each visual prompt into a
short, structured phrase appended to the instruction. For ex-
ample, a Bounding Box is described as “the red box out-
lining the target region”. This mapping makes the seman-
tics of each VP shape explicit in language. This design of-
fers two key benefits. First, it reduces ambiguity by explic-
itly stating whether a mark denotes a point or region. Sec-
ond, it improves vision-language alignment by mirroring
the same spatial cue in both the image and the text, guid-
ing the model to the correct region. Empirically, we observe
consistent gains from adding VP descriptions, especially for
complex shapes, showing that explicit textual VP semantics
are key to fully leveraging visual prompts in MLLM:s.

Stage 1 Data Curation Process

VPs play a pivotal role in guiding model attention and ad-
dressing complex problems. In Stage 1 evaluation, we treat
VPs as visual cues defined by their intrinsic shapes, at-
tributes, and colors, enabling more targeted information re-
trieval. We design the VP attributes according to a top-down



VP Shape Context

Tag A tag is a small label located at the cen-

ter of a target, displaying a number or

letter. It may be in red, blue, green, or
black, and can be circular or square in
shape.

A bounding box is a rectangular frame

that marks a target, which may be in

red, blue, green, or black.

Arrow An arrow is a symbol that points to a
target, which may be in red, blue, green,
or black.

Mask A mask is a filled area used to indicate a

target region, which may be in red, blue,

green, or black.

A contour is the outline of a target,

which may be in red, blue, green, or

black. It can be drawn precisely along
the outline or may resemble a loosely
hand-drawn line.

Oval An oval is an elliptical shape that encir-
cles a target, which may be in red, blue,
green, or black.

Point A point is a square or circular dot that

represents a target, located at the center

of the marked target, which may be in
red, blue, green, or black.

A scribble is a random hand-drawn line

that indicates a target, which may be in

red, blue, green, or black.

Bounding Box

Contour

Scribble

Table 3: Definitions of the eight visual prompt (VP) shapes
used in our benchmark. Each shape provides a distinct spa-
tial cue (e.g., location, extent, or outline of the target) that is
embedded into the model instructions.

hierarchical structure. Initially, we categorize VPs by shape,
such as tag, bounding box, arrow, mask, contour, oval, point,
and scribble, and further subdivide them by finer-grained at-
tributes and colors. The specific VP shapes and their corre-
sponding attributes are listed in the supplementary materials.
The data in Stage 1 primarily comes from the MS-COCO
dataset (Lin et al. 2014) due to its segmentation and bound-
ing box annotations. These annotations are essential for gen-
erating VPs and their associated question-answer pairs to as-
sess the capabilities of MLLMs.

To define the properties of each VP shape, we begin with
a detailed breakdown. A tag has attributes including: (1) an
alphabet or digit label at its center, with a circular or square
shape, and (2) font size specifying the label’s dimensions. A
bounding box is defined by: (1) line width, representing the
thickness of its outline, and (2) vertex shape, such as small
squares or circles at the corners. An arrow, pointing from a
selected direction to the target, has: (1) line width, and (2)
pointer shape, which could be triangular or wedge-shaped.
A mask is a filled region indicating the target, possibly ac-
companied by an outline, and consists of: (1) line width,
and (2) style, which could either be a filled region with or
without an outline. A contour captures the target’s outline,
characterized by: (1) line width, and (2) style, which may be

precise or hand-drawn. An oval is an elliptical shape encir-
cling the target, defined by the line width. A point is a small
square or circular dot located at the target’s center, described
by: (1) point size (the area it occupies), and (2) point shape
(square or circle). Finally, a scribble is a free-form line used
to indicate a target, defined by the line width of the scribble.

To evaluate the effect of VPs on visual perception, fine-
grained multiple-choice questions were generated for each
VP type, covering presence, location, enumeration, and re-
ferring objects, with up to four answer options depending
on the question type. First, question templates were cre-
ated manually with guidance from GPT-40 (OpenAl 2024),
and annotated answers from metadata were inserted into
these templates. Second, distractors were produced either
through manually crafted rules or by employing Qwen2-VL-
72B (Wang et al. 2024a) with carefully designed prompts
to ensure plausibility and quality. For instance, in “refer-
ence” questions, Qwen2-VL-72B generated realistic but in-
correct options, whereas for “VP spatial location” questions,
distractors were sampled based on randomized canvas posi-
tions. To enhance evaluation robustness, one debiased sam-
ple was included for every six entries. A debiased question
consists of a visual image that excludes the VP referenced
in the question, together with its corresponding QA pair, as
illustrated by the debias example in the Stage 1 evaluation
in Figure 1.

Overall, the Stage 1 data curation process establishes a
comprehensive foundation for evaluating MLLMs’ VP per-
ception capabilities in a controlled setting. By systematically
defining VP shapes, attributes, and associated QA pairs, this
stage isolates the model’s ability to interpret visual cues
independent of downstream reasoning tasks. The resulting
dataset enables fine-grained benchmarking of core VP com-
petencies and serves as the basis for the Stage 2 evaluation,
where VP understanding is integrated into complex, task-
oriented scenarios.

Stage 2 Data Curation Process

Stage 1 evaluates the performance of different VP types and
models in natural scenes. Following this, a new question
arises: Can VPs contribute to a broader range of VP-related
downstream tasks? How well do existing models perform in
this regard? Hence, in Stage 2 evaluation, we carefully select
several widely used application scenarios, such as natural
recognition, medical image analysis, human facial recogni-
tion, street view recognition, traffic sign recognition, visual
relation reasoning, GUI recognition, and 3D understanding,
which are further categorized into 6 tasks. To investigate
whether VPs enhance MLLMs’ regional perception under
downstream task scenarios, we evaluate both open-source
MLLM:s and proprietary systems, using each model’s best-
performing VP from Stage 1 results.

For data curation, the target scenarios were first de-
fined, followed by the specification of downstream tasks
for each scenario. Relevant datasets were collected through
searches on Google, Papers with Code, and Kaggle, and
each dataset’s suitability and relevance were systematically
evaluated. The data were then organized into a standardized
metadata format that includes task descriptions, questions,



answers, input contexts, regional annotations, and images.
This standardized format facilitated the construction of vi-
sual question—answer pairs, and the accuracy of the informa-
tion was manually verified to ensure its compatibility with
multiple-choice question generation. To maintain efficiency,
each task was limited to a maximum of 200 randomly se-
lected images with relevant entries, unless the dataset con-
tained fewer samples. A detailed description of the metadata
format is provided in the supplementary materials. The final
collection comprises datasets including SZ-CXR (Stirenko
et al. 2018), Gleason2019 (Nir et al. 2018), SD-100 (Li,
Hogg, and Cohn 2024), Emotic (Kosti et al. 2020), Map-
illaryVistas (Neuhold et al. 2017), SeeClick (Cheng et al.
2024), and PSG (Yang et al. 2022). These were grouped into
six downstream tasks: Medical Image Analysis (MIA) using
SZ-CXR and Gleason2019; 3D object recognition using SD-
100; facial emotion recognition using Emotic; street view
recognition using Mapillary Vistas; GUI element recognition
using SeeClick; and scene graph generation (SGG) using
PSG.

For question and answer generation, we adapt multiple-
choice visual questions (with up to four options), drawing
from each sample’s metadata. We either craft rules manually
or use Qwen2-VL-72B (Wang et al. 2024a) with carefully
designed prompts to ensure efficient and high-quality gener-
ation. For instance, in 3D question-answering tasks, Qwen2-
VL-72B generates plausible but incorrect distractors based
on the question and the correct answer, while in visual re-
lation reasoning tasks, we randomly select misleading item
classes from the metadata as alternative options.

In summary, the Stage 2 dataset extends the evaluation of
VPs beyond controlled natural scenes to diverse, task-driven
scenarios. By leveraging the best-performing VP configura-
tions from Stage 1, this stage enables a systematic assess-
ment of how visual prompting contributes to regional per-
ception and task-specific reasoning across multiple applica-
tion domains. The curated datasets and standardized ques-
tion—answer pairs provide a robust foundation for bench-
marking MLLMs in realistic downstream contexts, thereby
bridging the gap between VP perception and practical de-
ployment.

Experiment
Experiment Setup

Compared Models. In this study, we selected 3 propri-
etary models along with 24 open-source MLLMs across var-
ious categories. These include popular visual models (e.g.,
Qwen2.5-VL, InternVL-3, and Llama-3.2-Vision), special-
ized models (e.g., MiniCPM-V 2.6, CogVLM2, and GLM-
4V), and recently introduced vision-language architectures
(e.g., NVLM, DeepSeek-VL2, Ovis2, and Molmo). To fur-
ther illustrate the impact of model parameter scale and archi-
tecture on visual understanding, we incorporated models of
different scales from the InternVL3 and Qwen2.5-VL fami-
lies.

Evaluation Metrics. Our proposed VP-Bench is com-
prised of two stages, both stages are in multi-choice ques-
tion format, e.g., “Where is VP located? Options: (A)

In the bottom, (B) In the top”. Generally, we follow the
VLMEvalKit (Duan et al. 2024) procedure to evaluate mod-
els’ performance. Accuracy is the primary metric.

Evaluation Main Results

This section evaluates MLLMs on VP-Bench alongside Hu-
man baselines. We report the overall score for all perceptual
tasks in Table 13 as well as the best performance on each
downstream task in Table 5. Various instruction arrange-
ments for all tasks are investigated. We summarize the key
findings as follows.

In Stage 1 evaluation, we present the average accuracy of
all models across eight VP shapes and four question types in
Table 13, along with the human baseline. “Avg.” denotes the
average accuracy across all QA samples. In terms of overall
accuracy, InternVL3-78, InternVL3-38B, and Molmo-72B
rank among the top three, with accuracy around 87%. Other
statistics are as follows.

Across all question types, most models accurately detect,
count, and localize VP, achieving over 90% accuracy on ex-
istence queries, around 85% on enumeration queries, and
over 92% on rough-location queries. Their performance on
referring-expression resolution remains substantially lower:
mean accuracy hovers around 70%, and the community
favored Qwen-2.5-VL-72B reaches only 75.79%. When
benchmarked against human annotators, MLLMs still ex-
hibit an around 10% deficit.

An appropriate VP shape can significantly enhance a
model’s ability to detect both the prompt and the highlighted
region. For example, the bounding box shape is generally a
better comparison to the point shape in Table 13, as models
can achieve an average of 87.49% with the bounding box
shape, but only 67.22% accuracy with the point shape. As
well as reflecting most of the models’ best recognized VP
attributes combination, there are variations of the bound-
ing box shape in Table 5. The results indicate that a contrast
color bounding box with medium thickness is optimal for
more than half of the models, while a contrast color oval
with thin edges is also the most effective for many models,
where the contrast color is selected as one of the most dis-
tinctive red, green, or blue hues relative to the background.
Overall contrast color emerges as the preferred choice for
most models. This suggests that color plays a crucial role
in distinguishing the region of interest from the background.
Regarding scale, thin to medium scale VP yields better re-
sults, implying that MLLMs exhibit greater perceptual sen-
sitivity to thin prompts while preserving more contextual in-
formation.

Results Analysis

To further interrogate our preliminary findings, we carried
out a series of supplementary experiments whose results
yielded several salient statistical patterns. These additional
tests not only corroborate the baseline trends but also un-
cover nuanced insights into the models’ behavior under
varying prompt conditions. The remainder of this section
highlights the principal observations before delving into a
detailed, case-by-case analysis.



Model Visual Prompt Types Problem Types Ave.
Tag  Arrow BBox Contour Mask Oval Point Scribble Enumeration Existence Rough-Loc. VP-Ref.
Human Baseline
Human Reviewers 89.00 92.62 9729 87.68 8528 9487 90.68  82.80 90.73 94.36 97.68 84.26  90.03
Proprietary Models
GPT-40 69.95 7027 74.18  77.18 6532 79.77 49.28 6445 60.44 87.03 57.83 67.74  68.80
Doubao-Seed-1.6 86.21 79.60 93.60 7243  71.19 50.17 4749 6230 62.47 64.04 95.34 80.53  70.37
Qwen-VL-Max 9227 8284 93.10 8875 6751 92.84 6931 7445 81.80 88.11 92.13 76.82  82.63
Pre-trained Models
LLaVA-1.5-7B 6741 6675 6929 6425 6735 67.72 5945 4936 62.92 96.69 45.54 5328  63.95
CogVLM2-LLama3-Chat-19B 7454 6996 79.56  75.01 4822 81.54 40.75 4347 71.87 57.97 73.26 64.13  064.88
InternVL3-1B 7499 7991 7859 7551 56.00 84.06 58.68  63.93 79.56 67.49 78.83 63.45 7146
Qwen2.5-VL-3B-Instruct 87.16 7991 8541 80.18  52.18 84.58 5576  64.10 73.07 76.89 89.20 65.29 7341
LLaVA-1.5-13B 7798 7348 77.80 7847 7590 76.78 73.17  68.82 83.17 98.77 60.17 60.58  75.47
Llama-3.2-90B-Vision-Instruct 69.17 7971 9149  88.71 7428 91.69 5928  71.79 77.89 81.51 79.23 7176 78.45
DeepSeek-VL2 87.36 78.07 80.62 8224 7244 7576 76.80  66.20 73.92 91.41 80.86 7137 7794
LLaVA-OneVision-Qwen2-7B-OV  89.36  81.67 88.09  88.89  66.97 9289 60.76  69.99 79.80 84.99 91.47 69.43 7958
InternVL3-2B 89.17 8473 8892 8746 57.15 87779 79.08  69.87 81.41 88.12 89.70 7023 82.27
GLM-4V-9B 8543 79.62 87.17 86.65 74.00 8584 7546 74.71 91.37 91.44 70.77 7420  82.36
Qwen2.5-VL-7B-Instruct 90.39 8294 91.19 8825 66.51 91.51 6741 73.08 83.47 86.81 92.10 70.17  81.29
Qwen2.5-VL-32B-Instruct 91.11 8297 92.04 874l 69.29 9364 7529 74.13 83.94 90.13 91.31 7349  83.22
InternVL3-14B 91.14 85.17 93.03 9042 7047 94.67 73.83  69.64 83.18 89.73 93.51 7475  83.54
Qwen?2.5-VL-72B-Instruct 9226 8257 92.88  88.62 68.68 92.83 69.58  74.77 81.84 88.26 92.01 75779 82.80
Ovis2-34B 91.86 8439 93.03 90.63 6949 9438 7209 7249 84.72 88.19 92.49 7559  83.24
InternVL3-8B 91.25 8494 9286 92.83 71.60 9352 70.52 7535 86.68 89.13 94.19 7250  84.11
LLaVA-v1.6-34B-HF 90.89 86.00 86.46 86.59 77.61 O91.11 8428 76.86 82.62 94.97 93.86 7224 8497
InternVL3-9B 92.19 86.81 9376  90.68  73.01 9421 70.61 78.73 86.51 88.12 93.41 7137 85.00
NVLM-D-72B 91.28 8823 91.60 9022 76.02 9335 77.00 7541 83.82 93.99 92.06 76.50  85.39
Molmo-72B-0924 90.71 8531 9292  89.61 79.05 93.18 76.57 @ 71.56 87.18 97.24 92.46 70.08  85.61
InternVL3-38B 9273 86.49 9433 9228 77.15 93.86 7888  79.37 87.84 91.61 95.37 7793  86.89
InternVL3-78B 93.87 8577 9425 9156 80.01 95.81 81.59 80.89 88.59 92.93 95.24 79.65 8797
Fine-tuned with Visual-Prompt Data
ViPLLaVA-13B 75.00 53.02 8437 8627 83.79 5631 46.66  59.50 80.36 61.43 87.70 57.28  68.12
ViPLLaVA-7B 7644 69.78 81.71 83.78 7547 6577 6538  62.30 77.51 84.84 83.01 53.58 7258
Average 8526 79.66 8749 8500 69.88 8502 6722 @ 69.39 79.92 85.62 84.03 70.21 78.61

Table 4: Performance on VP-shape and question-type subtasks, sorted by overall accuracy. Best of each task excluding human

baseline is bold and second-best is underlined.

Shape regular VPs are more readily perceived by
MLLMs than shape irregular ones. As shown in Table 13,
models recognize regular VPs like Tag, Arrow, Bounding
Box, Oval, at around 80% accuracy on average, whereas for
irregular VPs like Mask, Point, Scribble, they only reach less
than 70%. Moreover, the gap relative to the human baseline
is larger on those irregular shapes. A per-model breakdown
shows that InternVL3-78B, while still 9.79% behind hu-
mans on Point, differs by only about 2% on Mask and Scrib-
ble, and even exceeds human performance on irregular con-
tours (91.56% compared to 87.68%). Notably, DeepSeek-
VL2 and InternVL3-14B suffer their worst scores on hand-
drawn scribbles. This pattern suggests that training data are
biased toward regular geometric forms, with fewer examples
of irregular shapes, which in turn impairs MLLMs’ ability to
detect those VP forms.

An explicit description of VP shapes is critical for en-
abling MLLMs to interpret them in context. To exam-
ine whether models truly understand VPs, we compared two
settings: with and without a VP-shape description inserted
into the instruction. As shown in Table 6, experiments were
conducted on InternVL3-78B and Qwen2.5-VL-72B, incor-
porating VP descriptions consistently enhanced the models’
comprehension of VPs, though the effect varied across VP
types. For instance, when VP descriptions were included in
the Arrow and Contour scenarios, InternVL3-78B achieved
only marginal improvements of 0.32% and 1.37%, respec-
tively, while Qwen2.5-VL-72B improved by just 0.61% and
0.81%. In contrast, substantial gains were observed in the

Mask and Point scenarios: InternVL3-78B improved by
29.24% and 12.38%, respectively, whereas Qwen2.5-VL-
72B improved by 27.3% in the Mask scenario but declined
by 3.05% in the Point scenario. These differences are likely
influenced by the distribution of training data, where the
frequency of each VP type affects the extent to which de-
scriptive prompts enhance model performance. Collectively,
these results suggest that providing an explanatory language
description of the VP can help models more accurately iden-
tify and interpret the corresponding visual cue in the image.

VPs that a model perceives most accurately are gen-
erally the best choices for downstream tasks but not al-
ways. To investigate this, we devised two selection schemes:

1. Random Best VP (R-BVP): is randomly selected from
the set of VP attribute combinations that achieved the
highest perception performance across all models in the
Stage 1 evaluation.

2. Best VP (BVP): always uses the single VP attribute com-
bination the current model perceives most accurately.

As shown in Table 5, for Qwen-2.5-VL-72B, the per-
formance gap between BVP and R-BVP stays within +
5%, and in over half of the tasks BVP outperforms R-
BVP. Likewise, InternVL3-78B shows slightly better results
with BVP in five tasks, for example, a +5.85% gain on
MIA and +1.00% on SD-100, and only trails by 0.26% on
SeeClick. By contrast, DeepSeek-VL2 exhibits much larger
disparities: in most downstream evaluations, BVP underper-
forms R-BVP (-11.71% on MapillaryVistas and —19.43%
on SeeClick), yet it exceeds R-BVP by +1.68% on MIA. A



M P y MIA SD-100 Emotic Mapillary Vistas SeeClick SGG Average
odel Best Attribution C
R-BVP BVP(A) R-BVP BVP(A) R-BVP BVP(A) R-BVP BVP(A) R-BVP BVP(A) R-BVP BVP(A) R-BVP BVP(A)
Proprietary Models
Doubao-Seed-1.6 bbox(contrast, round, thick) 57.56  59.60 (+2.04) 87.00  89.33 (+2.33) 72.95 70.48 (-2.47) 78.54  76.08 (-2.46) 98.01 97.22 (-0.79) 9591 96.18 (+0.27) 81.66  81.48 (-0.18)
GPT-40 Tag(digit, blue, round, small) 54.25  60.60 (+6.35) 74.00 7224 (-1.76) 65.61  66.04 (+0.43) 68.78  57.89 (-10.89) 97.44  97.00 (-0.44) 81.79  81.60 (-0.19) 73.64  72.56 (-1.08)
Qwen-VL-Max bbox(contrast, none, medium) 42.83  44.32(+1.49) 80.67  81.27 (+0.60) 74.02  73.03 (-0.99) 64.39 62.68 (-1.71) 96.30  96.89 (+0.59) 95.37  95.44 (+0.07) 75.60  75.61 (+0.01)
Pre-trained Models
CogVLM2-LLama3-Chat-19B oval(contrast, thin) 420 540 (+1.20) 27.67  31.33 (+3.66) 74.40  70.71(-3.69) 2927 3349 (+4.22) 70.17 7531 (+5.14) 84.36  83.30 (-1.06) 4835  49.92 (+1.57)
DeepSeek-VL2 tag(alphabet, green, round, large) 19.22 20.90 (+1.68) 2475 23.00 (-1.75) 66.18  63.76 (-2.42) 36.59 24.88 (-11.71) 86.93  67.50 (-19.43) 8520  83.30(-1.90) 53.15  47.22(-5.93)
GLM-4V-9B contour(contrast, contour, thick) 19.12 18.19 (-0.93) 61.00  59.33(-1.67) 66.67  64.94 (-1.73) 4390  53.59 (+9.69) 96.59  96.25(-0.34) 88.62  86.32(-2.30) 62.65 63.10 (+0.45)
InternVL3-1B oval(contrast, thin) 1972 17.20(-2.52) 47.00  46.67 (-0.33) 57.25 47.14(-10.11) 40.98  43.54 (+2.56) 91.48 9290 (+1.42) 88.80  88.45(-0.44) 57.55  55.98(-1.57)
InternVL3-2B bbox(contrast, none, thick) 38.64 40.40 (+1.76) 46.67  51.33 (+4.66) 66.18  66.67 (+0.49) 47.32  54.07 (+6.75) 94.60  98.46 (+3.86) 89.96  90.23 (+0.27) 63.89  66.86 (+2.97)
InternVL3-8B bbox(blue, round, medium) 45.55  46.60 (+1.05) 65.67  75.00 (+9.33) 74.64  71.76 (-2.88) 49.76  52.63 (+2.87) 97.73 97.50 (-0.23) 92,62 93.87 (+1.25) 71.00  72.89 (+1.89)
InternVL3-9B bbox(contrast, square, thin) 4775 4890 (+1.15) 69.33  76.33 (+7.00) 7343 74.29 (+0.86) 56.59  61.72(+5.13) 96.31  98.15 (+1.84) 90.93  91.83 (+0.90) 72.39  75.20 (+2.81)
InternVL3-14B bbox(contrast, square, thin) 30.83  29.90 (-0.93) 71.33  77.33 (+6.00) 7440  72.86 (-1.54) 58.54  61.72 (+3.18) 97.16  98.77 (+1.61) 92.62  93.07 (+0.45) 70.81  72.27 (+1.46)
InternVL3-38B bbox(red, square, thick) 46.65  48.40 (+1.75) 85.00  88.67 (+3.67) 71.98  72.94 (+0.96) 59.02 59.81 (+0.79) 98.58  99.00 (+0.42) 9324 94.23 (+0.99) 7574 77.17 (+1.43)
InternVL3-78B bbox(red, none, medium) 47.55  53.40 (+5.85) 86.00  87.00 (+1.00) 7295  73.65 (+0.70) 65.37  67.46 (+2.09) 98.01 97.75 (-0.26) 94.67  95.03 (+0.36) 7742 79.05 (+1.63)
Llama-3.2-90B-Vision-Instr. bbox(green, square, medium) 5475 59.50 (+4.75) 60.00  58.00 (-2.00) 61.59  65.65 (+4.06) 46.83  51.20 (+4.37) 97.44  98.50 (+1.06) 86.13  88.99 (+2.86) 67.79  70.31 (+2.52)
LLaVA-v1.5-7B tag(digit, red, square, medium) 29.53 3530 (+5.77) 29.67  31.00 (+1.33) 41.06  33.65(-7.41) 11.71  13.88 (+2.17) 8239  83.50 (+1.11) 83.47  73.87 (-9.60) 4631 4520 (-1.11)
LLaVA-v1.5-13B tag(alphabet, red, square, large) 37.94  30.60 (-7.34) 27.67 24.00 (-3.67) 49.52 39.76 (-9.76) 19.51 17.22 (-2.29) 84.66 80.25 (-4.41) 87.02  83.30(-3.72) 51.05 4585 (-5.20)
LLaVA-OneVision-Qwen2-7B-OV-HF  oval(blue, thick) 18.02  16.72(-1.30) 60.33  63.67 (+3.34) 65.13 64.39 (-0.74) 4146  47.37 (+5.91) 97.16  98.50 (+1.34) 91.56  92.01 (+0.45) 62.28 63.78 (+1.5)
LLaVA-v1.6-34B-HF oval(contrast, thin) 39.84  37.60 (-2.24) 48.00 5233 (+4.33) 68.12  64.05(-4.07) 4293 4833 (+5.40) 94.03  96.30 (+2.27) 92.09  91.30 (-0.79) 64.17  64.98 (+0.81)
MiniCPM-V-2_6 tag(digit, red, square, large) 14.61  15.30 (+0.69) 55.00 38.00 (-17.00) 7222 67.06 (-5.16) 4049 2632 (-14.17) 96.02  92.75(-3.27) 89.96  89.08 (-0.88) 61.38  54.75(-6.63)
Molmo-72B-0924 bbox(contrast, square, thin) 61.46  62.80 (+1.34) 78.00  78.00 (+0.00) 67.63  67.38 (-0.25) 63.41  60.77 (-2.64) 95.17  96.30 (+1.13) 90.93  91.83 (+0.90) 76.10  76.18 (+0.08)
NVLM-D-72B bbox(red, square, thick) 5345 58.10 (+4.65) 7133 77.00 (+5.67) 69.08  72.71 (+3.63) 5122 49.76 (-1.46) 94.60  97.00 (+2.40) 93.69  93.43 (-0.26) 72.23 74.67 (2.44)
Ovis2-34B bbox(contrast, square, thin) 3393  37.30 (+3.37) 78.33  83.33 (+5.00) 7440  73.10(-1.30) 53.66  50.72(-2.94) 99.15  99.69 (+0.54) 93.69  94.58 (+0.89) 72.19  73.12(+0.93)
VI bbox(red, none, medium) 2292 23.80 (+0.88) 68.67  66.00 (-2.67) 68.84  68.24 (-0.60) 39.02  44.02 (+5.00) 95.74  98.00 (+2.26) 94.49  94.49 (+0.00) 64.95  65.76 (+0.81)
L-7B-Instr. bbox(contrast, square, medium) 22,12 22.50 (+0.38) 76.00  77.33 (+1.33) 6932 70.71 (+1.39) 4390  52.63 (+8.73) 96.59  99.07 (+2.48) 92,62 92.27 (-0.35) 66.76  69.08 (+2.32)
Qwen2.5-VL-32B-Instr. bbox(contrast, none, medium) 32.00  39.60 (+7.60) 75.33  80.00 (+4.67) 6571  66.43 (+0.72) 53.85 47.37 (-6.48) 9773  97.84 (+0.11) 93.24  94.32 (+1.08) 69.64  70.93 (+1.29)
Qwen2.5-VL-72B-Instr. bbox(contrast, square, thin) 4244 43.80 (+1.36) 81.67  83.33 (+1.66) 7391 71.43(-2.48) 64.88  61.72(-3.16) 96.59  97.53 (+0.94) 9520 95.47 (+0.27) 75.78  75.55(-0.23)
Fine-tuned with Visual-Prompt Data
ViP-LLaVA-7B contour(blue, contour, medium) 3273 36.80 (+4.07) 3733 36.33 (-1.00) 48.07  46.59 (-1.48) 25.85 11.00(-14.85) 82.39 80.25 (-2.14) 87.56  83.84(-3.72) 5232 49.13(-3.19)
ViP-LLaVA-13B mask(red, fill, medium) 31.53  33.60 (+2.07) 2933 28.00(-1.33) 58.21  59.53 (+1.32) 2732 3397 (+6.65) 84.66  82.50(-2.16) 87.29 88.72(+1.43) 53.06  54.39 (+1.33)
Average 3575 37.39 (+1.64) 60.81  61.96 (+1.15) 66.55  64.96 (-1.59) 47.32 47.35(0.02) 93.34 9323 (-0.11) 90.46  90.01 (-0.45)

Table 5: Performance comparison on VP-related tasks.
in each task is bold and second-best is underlined.

“Best VP Attr. Comb.” indicates the Stage 1 attribute combination. Best

Model Tag  Arrow BBox Contour Mask Oval Point Scribble Avg.
InternVL3-78B

w/o VP description 91.69 8545 94.06 90.19 50.77 9249 69.21 76.52 81.30
w. VP description 93.87 85.77 94.25 91.56 80.01 95.81 81.59 80.89 87.97
Owen2.5-VL-72B-Instruct

w/o VP description 8593 8196 92.88 87.81 41.38 82.80 72.63 69.76 76.89
w. VP description 9226  82.57 92.88 88.62 68.68 92.83  69.58 74.71 82.77

Table 6: Comparison of model performance with and without VP descriptions on Stage 1 evaluation. Tag is the mean of
Alphabet and Digit. Avg. is the mean over {Tag, Arrow, BBox, Contour, Mask, Oval, Point, Scribble}.

similar pattern appears with GPT-40: BVP is +6.35% better
on MIA but —10.89% worse on Mapillary Vistas. These find-
ings suggest that, although a model’s perception accuracy is
generally the main criterion for choosing a VP, a robust VP-
selection strategy is also critical for maximizing downstream
performance.

Simply training models with VP data offers no clear
benefit. ViP-LLaVA extends the LLaVA architecture by in-
corporating VP-related data during the instruction tuning
stage to enhance VP perception, while LLaVA-1.5 serves
as the baseline model in our experiments for comparison
against ViP-LLaVA trained with VP-enriched datasets. In
Stage 1, LLaVA-1.5-7B achieved an average accuracy of
64.33%, whereas ViP-LLaVA-7B reached 73.01%. How-
ever, in Stage 2 downstream tasks, ViP-LLaVA-7B under-
performed LLaVA-1.5-7B by 2.88% on Mapillary Vistas and
by 3.25% on SeeClick. Furthermore, this straightforward
training approach led to degradation at larger scales: ViP-
LLaVA-13B’s Stage 1 accuracy dropped by 4.13% relative
to ViP-LLaVA-7B and by 6.72% relative to LLaVA-1.5-
13B. These findings indicate that downstream performance
depends more on a model’s robust foundational capabilities
and that improving VP perception without compromising
these core abilities requires more balanced data composition
and refined training strategies.

Conclusion

We introduce VP-Bench, a two-stage evaluation framework
for assessing the capabilities of MLLMs in perceiving VP
and solving grounded referring queries. In Stage 1, we con-
struct a dataset of over 30,000 VP images, covering 8 dis-
tinct VP shapes and 355 attribute combinations, to evaluate a
model’s general understanding of VPs. Our results show that
while MLLMs perform well in VP recognition and object
counting, they struggle with spatial localization and fine-
grained understanding. Additionally, existing models exhibit
a preference for bounding boxes and tags and show height-
ened sensitivity to red VPs. In Stage 2, we introduce 6 VP-
related downstream tasks to evaluate how well models inte-
grate VP perception for practical problem-solving. Experi-
mental results suggest that VPs offer certain advantages over
text-based spatial prompts for these tasks. However, model
performance remains largely dependent on domain knowl-
edge. Overall, this work aims to highlight the need to refine
VP attribute representations and enhance spatial reasoning,
ultimately improving model interpretability and real-world
applicability.
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Appendix

"meta_source": "Where is this data
retrieved?",
"data_file": "specify your respective separate

data file name",
"region": [
{
"meta_bbox": ["x1", "yl1l", "x2", "y2"],
"meta_polygon": "segmentation mask in
polygon format",
"meta_annotation": "original data annotation",
"question": "What does <VP> denote a region?",

"answer": "Propose a Q-A answer."

Table 7: The example of the metadata.

Benchmark Curation

We propose a benchmark consisting of two evaluation
stages. To accurately achieve the goals of each stage, we
collected data separately for stages 1 and 2 and defined a
unified data-generation and review pipeline as in Figures 3
and 4. In both stages, these pipelines follow five phases: raw
data collection, data-quality assessment, question definition,
QA generation, and visual-prompt (VP) rendering. Below,
we describe each phase in detail.

Stage 1 Data Curation

Question Definition. The objective of Stage 1 is to evaluate
how the model perceives VPs. To this end, we define four
core aspects of VP perception: existence, enumeration, lo-
cation, and reference. Specifically:

1. Existence. “Does a VP of this particular color and shape
appear in the image or not?”

2. Enumeration. “How many VPs of this specific shape are
present in the image?”

3. Location. “What is the position (e.g., top-left, bottom-
right) of a given VP in the image?”

4. Reference. “Which object is being highlighted by the VP
in the image?”

Data Collection. The dataset must support all four question

types, so we chose an object-detection or semantic segmen-

tation dataset. To minimize domain shift, letting the model

focus on VP perception, we selected MS-COCO (Lin et al.

2014), which is widely used as pretraining data for multi-

modal LLMs.

QA Generation. Questions need to accurately reflect the

four defined intents, and answers must be exact. We created

VP Shape

Tag A tag is a small label located at the cen-
ter of a target, displaying a number or
letter. It may be in red, blue, green, or
black, and can be circular or square in
shape.

A bounding box is a rectangular frame

that marks a target, which may be in

red, blue, green, or black.

Arrow An arrow is a symbol that points to a
target, which may be in red, blue, green,
or black.

Mask A mask is a filled area used to indicate a

target region, which may be in red, blue,

green, or black.

A contour is the outline of a target,

which may be in red, blue, green, or

black. It can be drawn precisely along
the outline or may resemble a loosely
hand-drawn line.

Oval An oval is an elliptical shape that encir-
cles a target, which may be in red, blue,
green, or black.

Point A point is a square or circular dot that

represents a target, located at the center

of the marked target, which may be in
red, blue, green, or black.

A scribble is a random hand-drawn line

that indicates a target, which may be in

red, blue, green, or black.

Context

Bounding Box

Contour

Scribble

Table 8: The Description of Visual Prompt Shapes.

Question Types Question Template

Existence Is there any <VP> in the image?

Enumeration How many <color> <VP> are in the image?
Location Where is the <color> <VP> located in the image?
Reference What is the <color> <VP> referring to in the image?

Table 9: Stage 1 question types and their corresponding tem-
plates.

templates for each question—answer pair in Table 9. To make
them read more fluently, we used a large language model to
rephrase both questions and answers.

VP Rendering. To generate diverse VPs, we developed a
modular rendering framework. It supports many VP shapes
by using the factory pattern in the core visualization module
and the proxy pattern at the interface layer. Our implemen-
tation defines 8 independent VP-shape classes; new shapes
can be added without altering existing code. We integrate
this into our data pipeline via a unified drawing interface
with customizable attributes, improving readability and re-
ducing development effort.

Stage 2 Data Curation

Question Definition. Stage 2 examines how different VPs
affect downstream tasks. We selected six common tasks that
also involve reference information:

1. Medical Image Analysis (MIA),



AR

Visual Prompt Visualization

Question Format Rule (Omit Details)

Existence

Q: Is there any {visual prompt} in the image?

A: Yes, there is at least one {visual prompt} in the
image.

Captions: [“A striped
plane flying up into the
sky as the sun shines
behindit”, ...]

Enumeration

Q: How many {visual shape} are in the image?
A: There {'is’/ 'are'}{count}{visual prompt} in the
image.

Data Curation

T

1

,___________

Existence

Is there any blue bounding box in the image?

A. Yes, there is at least one blue bounding box in the image.

B. No, there is no blue bounding box
in the image.

Answer: A

Enumeration

How many bounding box are in the image?
A. Thereis no bounding box in the image.
B. Thereis 1 bounding box in the image.
C. There are 3 bounding boxs in the image.
D. There are 2 bounding boxs in the image.
Answer: B

Stage 1 Benchmark QAs P

[ - \\ === =========== N
1 H . N
i 1 1 [ <] Visual Prompt Visualization : H 1
| [ ! !
ollect 1 2 q 1
: %lc : i Question Format Rule 1 : 1
1
1
1 Natural Image L ’ 1!
1 g [ Meta Annotation Format p ! |
Mapillar [ 1 1
: [MSCOCO] [v. Pary| locrBench |, i 'y |
istas yol e I \
1 “meta_source": "Where is this data retrieved?", 1
1 [PSG ] [EMOTIC ] |_>: "data_file": "specify your respective separate data file name", |_>I :
1 1 “region”: o
1 1
: X-Ray Image Medical Image : 1 [( 1 : What en.wtion is the person showing in the area highlighted by 1
| “meta_bbox": ["x1", "y1", "x2", "y2"], 1 ared ellipse? |
! H&E-stained | Prostate : | T R eI, I ! A Thedetected facial expression is happiness. f
1| Chest X-ray tissue Cancer i “meta_annotation’:"original data annotation (f any)’, I 1| B.The detected facial expression is excited. 1
1 1 el s @AGUEST) WiEE X C B @ R T | 1| C.The detected facial expression is surprised.
| ' ‘answer": "propose a Q-A answer | bThed d facial S sed 1
GUI Image 3D Image 1 } 1 . The detected facial expression is surprised. \
! ] 2 11 Answer: A !
1 N 1 ¥ 1
1 [SeeCllck ] [RoomSpace] 10 : 1 1
1 1 1 ! 1
. [N ; |
'\ Raw Datasets Collection J N Data Processing ,’ l\ Stage 2 Benchmark QAs 7

Figure 4: Benchmark Stage 2 Q& As generation pipeline.

Indoor 3D Object Recognition,
Facial Expression Recognition,
Street-Scene Recognition,

GUI Element Recognition,
Scene-Graph Generation (SGG).

For each task, we retain its original objective. For example,
in medical-image analysis, the question becomes: “Identify
the region highlighted by the VP and diagnose the possible
condition.”

Data Collection. Each co-author was assigned one down-

stream task and located the corresponding training or vali-
dation dataset by: (i) original publication datasets, those in-
troduced by the task’s authors; (ii) public repositories, any
relevant dataset on HuggingFace*, Papers with Code’, etc.
Each dataset then review by three independent examiners
(excluding its collector) to ensure:

1.
2.
3.

license availability, usable under our intended license,
VP applicability, supports overlaying visual prompts,

annotation quality, those clear, accurate labels to avoid
ambiguous or incorrect QAs.

Approved datasets were converted into the metadata schema
defined in Table 7.

“https://huggingface.co/

"https://paperswithcode.com/

QA Generation. To ensure consistency and clarity, we
designed standardized question templates tailored to each
task. For example, in the facial emotion recognition task, the
template takes the form:

What emotion is the person showing in the area high-
lighted by <color> <VP>?

To generate natural distractors, we randomly selected three
incorrect emotion categories from the dataset and prompted
the LLM to produce three fluent but misleading alternatives.

For the MIA (Medical Image Analysis) task, the template
follows a similar pattern:

A <Medical Image Type> of <Human
Organ> is provided, with the region of interest
marked by <color> <VP> Please assess the
pathological characteristics of this region.

Here, distractors were generated by providing the LLM with
incorrect tissue types and unrelated disease causes to con-
struct plausible but incorrect options.

Likewise, in the SVR (Street-View Recognition) task, the
question format is:

What does the red oval highlight in this <color>
<vp>?

The LLM was guided using unrelated traffic components as
cues, ensuring the distractors appeared contextually relevant
but remained distinguishable from the correct answer.



Scenario Question Template

FER What emotion is the person showing in the area
highlighted by <color> <vP>?

SVR What does the red oval highlight in this <color>
<VvP>?

MIA A <Medical Image Type> of <Human

Organ> is provided, with the region of interest
marked by <color> <VP>. Please assess the
pathological characteristics of this region.
3DOR Given a top-down and a front view (from south to
north) of a room, identify the object marked by the
<color> <VP> and specify its position.
SGG What is the object that is on the thing highlighted
by the <color> <VP>?
Can you recognize the graphical user interface
(GUI) element highlighted by the <color>
<VP>?

GUIER

Table 10: Stage 2 downstream-task question templates: Fa-
cial Emotion Recognition (FER), Street-view Recognition
(SVR), Medical Image Analysis (MIA), 3D Object Recog-
nition (3DOR), Scene-Graph Generation (SGG), and GUI
Element Recognition (GUIER).

VP Rendering. Thanks to the Stage 1 framework, we sim-
ply reused the same codebase to render the visual prompts
needed for Stage 2.

Model Avg. VP Accuracy Avg. Downstream Accuracy
Human Baseline 90.03 -
GPT-4o0 (proprietary) 68.80 72.56
Qwen-VL-Max (proprietary) 82.63 75.61
Qwen2.5-VL-3B 73.41 65.76
Qwen2.5-VL-7B 81.29 69.08
Qwen2.5-VL-32B 83.22 70.93
Qwen2.5-VL-72B 82.80 75.55
InternVL3-1B 71.46 55.98
InternVL3-8B 84.11 72.89
InternVL3-38B 86.89 77.17
InternVL3-78B 87.97 79.05
Molmo-72B 85.61 76.18
NVLM-D-72B 85.39 74.67

Table 11: Simplified summary of model scale versus VP per-
ception (Stage 1) and downstream task accuracy (Stage 2).

More Experiments Results and Analysis

All experiments were conducted on a cluster of 8 xH800
GPUs (80 GB memory each). As no training was performed,
the computational cost is limited to model inference. During
inference, the decoding was restricted to the top-1 response
for all evaluations to eliminate randomness.

Human performance baseline compared with model
results. To establish a human performance baseline, par-
ticipants unfamiliar with this work individually completed
the Stage 1 benchmark. For efficiency, 1,000 questions were
randomly sampled from the original dataset, and each partic-
ipant took the test independently without any prior briefing
or in-process discussion.

Human participants achieved an average accuracy of
90.03% across all tasks, whereas the best-performing model,
InternVL3-78B, reached 87.97%. This indicates that while
current models exhibit near-human VP perception, there re-
mains room for improvement. In certain VP types, how-
ever, the model surpassed human performance; for example,
InternVL3-78B achieved 93.87% on Tag, exceeding the hu-
man score of 89.00%. Nevertheless, model stability lagged
behind that of humans. In Point perception, for instance,
human accuracy was 90.68%, whereas model performance
ranged from 49.28% to 81.59%.

Open-source models have already overtaken propri-
etary models in VP perception. In Table 13, most tested
open-source models achieve an average accuracy of around
80%, with InternVL3-78B reaching 88.62%. By contrast,
proprietary models score 68.93% for GPT-40, 72.13% for
Doubao-Seed-1.6, and 83.7% for Qwen-VL-Max. Surpris-
ingly, GPT-40’s spatial perception of VPs lags consider-
ably, at only 57.83% accuracy. In our Stage 2 evaluation
on downstream tasks, NVLM-D-72B, Qwen-2.5-VL-72B,
InternVL3-78B, and Molmo-72B perform very competi-
tively against proprietary models. Notably, Molmo-72B out-
performs GPT-40 on MIA, street-view recognition, 3D ob-
ject recognition, and SGG tasks. Taken together, these find-
ings indicate that open-source MLLMs are not only closing
the gap but have already surpassed proprietary counterparts
in VP perception and several downstream domains.

Model scale strongly correlates with VP perception ac-
curacy. As shown in Table 11, both the Qwen2.5-VL and In-
ternVL3 families exhibit consistent performance gains with
increasing parameter size, with InternVL3-78B achieving
the highest Stage 1 accuracy 87.97%. Larger models demon-
strate particular advantages on irregular VP types such as
Mask and Point, where smaller models show pronounced
drops, suggesting that fine-grained regional perception ben-
efits from higher-capacity vision—language representations.
For Stage 2 downstream tasks: models above 30B param-
eters, including InternVL3-38B, InternVL3-78B, Molmo-
72B, and NVLM-D-72B, consistently outperform mid- and
small-scale counterparts across MIA, 3D object recogni-
tion, and street-view recognition. These results indicate that
scaling improves both VP detection and the integration of
VP cues into task-specific reasoning, narrowing the gap to
human-level performance and enabling robust transfer to di-
verse application domains.

Prompts

Accurate prompt design is critical for consistent data gen-
eration, annotation refinement, and model evaluation in VP-
Bench. This section details the prompt templates used across
three stages of the pipeline. First, Table 14 presents the
multi-choice question generation prompt, which instructs
the LLM to produce plausible but incorrect distractors to en-
hance dataset diversity. Second, Table 15 shows the annota-
tion expansion prompt, which rephrases and reorganizes tex-
tual descriptions while retaining their core semantics to im-
prove linguistic variety. Finally, Tables 16 and 17 describe
the benchmarking prompts that standardize model evalua-
tion using a consistent question—answering format, with or



Model Emotic Mapillary Vistas MIA SD-100 SGG See-Click Avg. Vis. (A)  Avg. Txt.
Vis. Txt. Vis. Txt. Vis. Txt. Vis. Txt. Vis. Txt. Vis. Txt.
CogVLM2-LLama3-Chat-19B 70.71 78.12 3349 2392 540 5.60 31.33 13.33 8330 8330 7531 43.50 49.92(+8.86) 41.30
DeepSeek-VL2 2090 67.76 24.88 2440 2090 20.60 45.67 19.33 8330 84.37 67.50 68.00 43.86(-3.55) 47.41
GLM-4V-9B 6494 69.88 5359 30.62 18.19 1870 59.33 40.00 8632 86.59 96.25 95.00 63.10 (+6.31) 56.80
Llama-3.2-90B-Vision-Instruct 65.65 69.65 5120 4498 59.50 62.70 58.00 56.00 8899 92.18 98.50 97.50 70.31(-0.20) 70.50
LLaVA-OneVision-Qwen2-7B-OV-HF = 64.39 74.29 4737 3349 1672 1772 63.67 63.33 92.01 90.76 92.01 9425 62.70 (+0.39) 62.31
LLaVA-v1.6-34B-HF 64.05 6447 4833 43.06 37.60 3530 5233 5500 91.30 89.52 9630 9475 64.99 (+1.30) 63.68
MiniCPM-V-2_6 67.06 7271 2632 3541 1530 1370 38.00 6533 89.08 89.88 9275 96.75 54.75(-7.55) 62.30
Molmo-72B-0924 67.38 61.88 60.77 5215 62.80 6290 78.00 67.33 9183 86.59 9630 89.75 76.18 (+6.08) 70.10
NVLM-D-72B 7271 73.18 4976 41.15 58.10 60.90 77.00 75.67 9343 92.18 97.00 96.75 74.67 (+1.36) 73.31
Ovis2-34B 73.10 7412 50.72  60.77 3730 50.20 83.33 79.00 94.58 9236 99.69 99.25 73.12(-2.83) 75.95
Qwen2.5-VL-72B 7143 7153 61.72 5981 4380 39.20 83.33 85.67 9547 94.14 97.53 98.00 75.55(+0.82) 74.73

Table 12: Comparison of model performance with VP and text-based spatial prompt (TP) baseline on Stage 2 evaluation.
Average VP accuracy reports absolute accuracy followed by the signed changed A relative to its baseline.

Visual Prompt Types

Problem Types

Model Avg.
Tag  Arrow BBox Contour Mask Oval Point Scribble Enumeration Existence Rough-Loc. VP-Ref.

Human Baseline

Human Reviewers 89.00 92.62 9729 87.68 8528 94.87 90.68  82.80 90.73 94.36 97.68 84.26  90.03
Proprietary Models

GPT-40 69.95 7027 7418  77.18 6532 7977 4928 6445 60.44 87.03 57.83 67.74  68.80
Doubao-Seed-1.6 86.21 79.60 93.60 7243  71.19 50.17 4749  62.30 62.47 64.04 95.34 80.53  70.37
Qwen-VL-Max 9227 82.84 9310 8875 67.51 92.84 69.31 74.45 81.80 88.11 92.13 76.82  82.63
Pre-trained Models

Qwen2.5-VL-72B-Instruct  92.26  82.57 92.88  88.62  68.68 92.83 69.58  74.77 81.84 88.26 92.01 7579  82.80
NVLM-D-72B 91.28 8823 91.60 9022 76.02 9335 77.00 7541 83.82 93.99 92.06 76.50  85.39
Molmo-72B-0924 90.71 8531 9292  89.61 79.05 93.18 76.57  77.56 87.18 97.24 92.46 70.08  85.61
InternVL3-78B 93.87 8577 9425 9156 80.01 9581 8159  80.89 88.59 92.93 95.24 79.65  87.97

Table 13: Performance on VP-shape and question-type subtasks, sorted by overall accuracy.

without explicit VP descriptions, enabling controlled exper-
iments on VP perception.

Visual Prompt Properties

Visual prompts are visual cues embedded within images that
help guide a model’s attention and interpretation. They come
in a variety of shapes, such as tags, bounding boxes, arrows,
masks, contours, ovals, points, and scribbles, each designed
with distinct properties. These properties include color vari-
ations, line styles, thicknesses, and additional stylistic fea-
tures that can be adjusted to enhance contrast and clarity.
Table 18 provides a detailed overview of these visual prompt
shapes along with a set of attributes for each, illustrating the
customizable nature of these prompts and how they can be
tailored for specific applications.

Qualitative Result

In this section, we present qualitative visual results from our
evaluation. In Stage 1, we assess the model’s performance
across all eight visual prompt types and five question types.
Representative examples, illustrated in Figures 5, 6, 7, 8, 9,
10, 11, and 12, demonstrate how models interpret and re-
spond to varied VPs. In Stage 2, we showcase qualitative re-
sults for downstream tasks, as shown in Figures 13, 14, and
15, where model responses to task-specific questions are ex-
amined. These results provide key insights into the models’
capabilities in processing multimodal inputs and highlight
areas for further improvement.

<SYSTEM PROMPT >

You are an Al assistant specialized in generating plausible distractor options for
multiple-choice visual questions. Your primary task is to create distractor options that
are incorrect but plausible, aiming to challenge the user while ensuring it remains
distinguishable from the correct answer.

<USER PROMPT >

For the question ’<question>’ and its correct answer *<answer>’, generate three
plausible but incorrect distractor options. These options should be similar to the
correct answer to create confusion, yet still distinct enough to be clearly wrong.

Your output should be formatted as follows in JSON: * **json
{
"distractor_options": [
"Distractor option 1",
"Distractor option 2",

"Distractor option 3"

Table 14: Prompt template used to instruct the LLM to gen-
erate plausible but incorrect distractor options for multiple-
choice visual questions. The system prompt defines the task,
while the user prompt supplies the question and the correct
answer.



The following paragraph should be rewritten while retaining the essential information.
Different expressions should be used, and the paragraph may be reorganized if neces-
sary. The paragraph should not be altered merely by converting the passive voice to

active voice or vice versa.

Table 15: Instruction template for rewriting a paragraph
while preserving its essential information. The guidance em-
phasizes using different expressions and allows reorganiza-
tion of the content rather than simply switching between pas-
sive and active voice.

Context: { VP description}
{QUESTION}

A. {OPTION_A}

B. {OPTION_B}

C. {OPTION_C}

D. {OPTION.D}

Answer with the option’s letter from the given choices directly.

Table 16: General instruction prompt template used to gen-
erate multiple-choice questions for VP perception tasks. The
{VP description} field is optionally included depending on
the experimental setting.

Example with VP description

Example without VP description

Context: An arrow is a symbol that points
to a target, which may be in red, blue,
green, or black.

Where is the red arrow located in the im-
age?

A. The red arrow is located in the bottom-
left.

B. The red arrow is located in the bottom-
right.

C. The red arrow is located in the top-
right.

D. The red arrow is located in the top-left.
Answer with the option’s letter from the
given choices directly.

Where is the red arrow located in the im-
age?

A. The red arrow is located in the bottom-
left.

B. The red arrow is located in the bottom-
right.

C. The red arrow is located in the top-
right.

D. The red arrow is located in the top-left.
Answer with the option’s letter from the
given choices directly.

Table 17: Comparison of instruction arrangements with and
without a VP description. Left: Guiding the model to inter-
pret the visual prompt via the VP description; Right: Testing
the model’s ability to infer VP meaning from visual cues
alone.
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Arrow - Enumeration

Question: How many arrow are in the image?

Options

A.There is 1 arrow in the image.

B. There are 2 arrows in the image.
C. There is no arrow in the image.
D. There are 3 arrows in the image.

Answer: A

Qwen2.5-VL-72B: A

Arrow - Existence

Question: Is there any arrow in the image?

Options
A. No, there is no arrow in the image.
B. Yes, there is at least one arrow in the image.

¥ Do uBEEH

Wy N

Answer: B

InternVL2.5-78B: B

Arrow - Location

Question: Where is the blue arrow located in the image?

Options

A.The blue arrow is located in the right-half.

B. The blue arrow is located in the bottom-half.
C. The blue arrow is located in the left-half.

D. The blue arrow is located in the top-half.

Answer: C

Qwen2.5-VL-72B: C

Arrow - Reference

Question: What is the green arrow referring to in the
image?

Options

A.The green arrow refers to a laptop.
B. The green arrow refers to a drink.
C. The green arrow refers to a person.
D. The green arrow refers to a book.

Answer: C

DeepSeek-VL2: C

Arrow - Enumeration

Question: How many arrow are in the image?

Options

A.There are 3 arrows in the image.
B. Thereis 1 arrow in the image.

C. There is no arrow in the image.
D. There are 2 arrows in the image.

Answer: B

Qwen2.5-VL-72B: C

Arrow - Existence

Question: Is there any arrow in the image?

Options
A. No, there is no tag in the image.
B. Yes, there is at least one tag in the image.

Answer: A

Intern!L245-7SB: B

Arrow - Location

Question: Where is the blue arrow located in the image?

Options

A.The blue arrow is located in the left-half.

B. The blue arrow is located in the bottom-half.
C. The blue arrow is located in the top-half.

D. The blue arrow is located in the right-half.

Answer: A

Qwen2.5-VL-72B: B

Arrow — Reference

Question: What is the black arrow referring to in the image?

Options

A.The black arrow refers to a line on the grass.

B. The black arrow refers to a shadow on the ground.
C. The black arrow refers to a person.

D. The black arrow refers to a baseball glove.

Answer: C

Deepéeek»VLZ: B

Figure 5: Qualitative results of arrow shape in Stage 1 evaluation.



Bounding Box — Enumeration Bounding Box — Enumeration

Question: How many bounding box are in the image? Question: How many bounding box are in the image?

Options

A.There is 1 bounding box in the image.

B. There are 3 bounding boxs in the image.
C. There is no bounding box in the image.
D. There are 2 bounding boxs in the image.

Options

A.There are 2 bounding boxs in the image.
B. There is no bounding box in the image.
C. There are 3 bounding boxs in the image.
D. There is 1 bounding box in the image.

Answer: A Answer: D

Qwen2.5-VL-72B: A Qwen2.5-VL-72B: B

Bounding Box - Existence Bounding Box - Existence

Question: Is there any bounding box in the image? Question: Is there any bounding box in the image?

Options
A. No, there is no bounding box in the image.
B. Yes, there is at least one bounding box in the image.

Options
A. No, there is no bounding box in the image.
B. Yes, there is at least one bounding box in the image.

Answer: B Answer: B

InternVL2.5-78B: B Intern!LZ.SJBB: A

Bounding Box — Location Bounding Box — Location
Question: Where is the red bounding box located in Question: Where is the blue bounding box located in the
the image? image?
Options Options

A.The red bounding box is located in the bottom-half.
B. The red bounding box is located in the left-half.

C. The red bounding box is located in the top-half.

D. The red bounding box is located in the right-half.

A. The blue bounding box is located in the top-half.

B. The blue bounding box is located in the right-half.

C. The blue bounding box is located in the left-half.

D. The blue bounding box is located in the bottom-half.

Answer: D Answer: D
Qwen2.5-VL-72B: D Qwen2.5-VL-72B: D
Bounding Box — Reference Bounding Box — Reference
Question: What is the blue bounding box referring to in Question: What is the blue bounding box referring to in
the image? the image?
Options Options

A. The blue bounding box refers to a car.

B. The blue bounding box refers to a motorcycle.
C. The blue bounding box refers to a scooter.

D. The blue bounding box refers to a bicycle.

A. The blue bounding box refers to a wine glass.

B. The blue bounding box refers to a bottle of wine.
C. The blue bounding box refers to a kitchen utensil.
D. The blue bounding box refers to a cup.

Answer: B Answer: D

\ B S
DeepSeek-VL2: B Deepgeek-VLZ: A

Figure 6: Qualitative results of bounding box shape in Stage 1 evaluation.




Contour — Enumeration

Question: How many contour are in the image?

Options

A.There are 2 contours in the image.
B. There is no contour in the image.
C. There are 3 contours in the image.
D. There is 1 contour in the image.

Answer: D

Qwen2.5-VL-72B: D

Contour - Existence

Question: Is there any contour in the image?

Options
A. Yes, there is at least one contour in the image.
B. No, there is no contour in the image.

Answer: A

InternVL2.5-78B: A

Contour - Location

Question: Where is the red contour located in the
image?

Options

A. The red contour is located in the right-half.

B. The red contour is located in the top-half.

C. The red contour is located in the left-half.

D. The red contour is located in the bottom-half.

Answer: A

Qwen2.5-VL-72B: A

Contour - Reference

Question: What is the blue contour referring to in the image?

Options

A. The blue contour refers to a coffee table.
B. The blue contour refers to a chair.

C. The blue contour refers to a couch.

D. The blue contour refers to a vase.

Answer: C

DeepSeek-VL2: C

Contour — Enumeration

Question: How many contour are in the image?

Options

A.There are 3 contours in the image.
B. There is no contour in the image.
C. There are 2 contours in the image.
D. There is 1 contour in the image.

Answer: D

Qwen2.5-VL-72B: A

Contour - Existence

Question: Is there any contour in the image?

Options
A. Yes, there is at least one contour in the image.
B. No, there is no contour in the image.

Answer: A

Intern!L2.5-7BB: B

Contour - Location

Question: Where is the green contour located in the
image?

Options

A.The green contour is located in the left-half.

B. The green contour is located in the top-half.

C. The green contour is located in the right-half.

D. The green contour is located in the bottom-half.

Answer: A

Qwen2.5-VL-72B: C

Contour — Reference

Question: What is the red contour referring to in the image?

Options

A. The red contour refers to a slice of cheese.
B. The red contour refers to an apple.

C. The red contour refers to a tomato.

D. The red contour refers to a piece of bread.

Answer: B

Deepgeek—VLZ: Cc

Figure 7: Qualitative results of contour shape in Stage 1 evaluation.




Tag — Enumeration

Question: How many tag are in the image? ﬁ

Options

A.There are 3 tags in the image.
B. There is no tag in the image.
C.There is 1tagin the image.

D. There are 2 tags in the image.

Answer: D

DeepSeek-VL2: C

Tag - Existence

Question: Is there any tag in the image?

Options
A. No, there is no tag in the image.
B. Yes, there is at least one tag in the image.

Answer: B

InternVL2.5-78B: B

Tag - Location

Question: Where is the red tag located in the image? f“!

Options

A.The red tag is located in the bottom-half.
B. The red tag is located in the right-half.

C. The red tag s located in the left-half.

D. The red tag is located in the top-half.

Answer: C

Qwen2.5-VL-72B: C

Tag — Reference

Question: What is the blue tag referring to in the image?

Options

A.The blue tag refers to a stovetop.

B. The blue tag refers to a microwave.
C. The blue tag refers to a oven.

D. The blue tag refers to a dishwasher.

Answer: C

DeepSeek-VL2: C

Tag — Enumeration

Question: How many tag are in the image?

Options

A.There is no tag in the image.
B. There are 2 tags in the image.
C. There are 3 tags in the image.
D.There is 1 tagin the image.

Answer: D

InternVL2.5-78B: D

Tag — Existence

Question: Is there any tag in the image?

Options
A. No, there is no tag in the image.
B. Yes, there is at least one tag in the image.

Answer: A

Qwen2.5-VL-72B: B

Tag - Location

Question: Where is the black tag located in the image?

Options

A.The black tag is located in the bottom-half.
B. The black tag is located in the right-half.

C. The black tag is located in the top-half.

D. The black tag is located in the left-half.

Answer: B

Qwen2.5-VL-72B: D

Tag — Reference

Question: What is the blue tag referring to in the image?

Options

A.The blue tag refers to a stovetop.

B. The blue tag refers to a microwave.
C. The blue tag refers to a oven.

D. The blue tag refers to a dishwasher.

Answer: C

Deepgeek-VLZ B

Figure 8: Qualitative results of tag shape in Stage 1 evaluation.



Mask - Enumeration

Question: How many mask are in the image?

Options

A.There are 2 masks in the image.
B. There is no mask in the image.
C. There are 3 masks in the image.
D. There is 1 mask in the image.

Answer: D

Qwen2.5-VL-72B: D

Mask - Existence

Question: Is there any mask in the image?

Options
A. Yes, there is at least one mask in the image.
B. No, there is no mask in the image.

Answer: A

InternVL2.5-78B: A

Mask - Location

Question: Where is the black mask located in the
image?

Options

A.The black mask is located in the bottom-half.
B. The black mask is located in the left-half.

C. The black mask is located in the right-half.

D. The black mask is located in the top-half.

Answer: C

Qwen2.5-VL-72B: C

Mask - Reference

Question: What is the red mask referring to in the image?

Options

A.The red mask refers to a car.

B. The red mask refers to a train.

C. The red mask refers to a subway station.
D. The red mask refers to a passenger bus.

Answer: B

DeepSeek-VL2: B

Mask - Enumeration

Question: How many mask are in the image?

Options

A.There are 2 masks in the image.
B. There is no mask in the image.
C. There is 1 mask in the image.
D. There are 3 masks in the image.

Answer: C

Qwen2.5-VL-72B: B

Mask - Existence

Question: Is there any mask in the image?

Options
A. Yes, there is at least one mask in the image.
B. No, there is no mask in the image.

Answer: A

InternVL2.5-78B: B

Mask - Location

Question: Where is the red mask located in the image?

Options

A.The red mask is located in the right-half.

B. The red mask is located in the top-half.

C. The red mask is located in the left-half.

D. The red mask is located in the bottom-half.

Answer: A

Qwen2.5-VL-72B: B

Mask - Reference

Question: What is the black mask referring to in the image?

Options

A.The black mask refers to a plate.
B. The black mask refers to a napkin.
C. The black mask refers to a fork.

D. The black mask refers to a knife.

Answer: C

Deepgeek—VLZ: A

Figure 9: Qualitative results of mask shape in Stage 1 evaluation.



Oval - Enumeration

Question: How many oval are in the image?

Options

A.Thereis 1 ovalin the image.

B. There are 2 ovals in the image.
C. There is no oval in the image.
D. There are 3 ovals in the image.

Answer: A

Qwen2.5-VL-72B: A

Oval - Existence

Question: Is there any oval in the image?

Options
A. Yes, there is at least one oval in the image.
B. No, there is no oval in the image.

Answer: A

InternVL2.5-78B: A

Oval - Location

Question: Where is the black oval located in the
image?

Options

A.The black ovalis located in the top-half.

B. The black oval is located in the bottom-half.
C. The black ovalis located in the right-half.

D. The black oval is located in the left-half.

Answer: D

Qwen2.5-VL-72B: D

Oval - Reference

Question: What is the black oval referring to in the image?

Options

A.The black oval refers to a spaceship.
B. The black oval refers to a airplane.
C. The black oval refers to a drone.

D. The black oval refers to a helicopter.

Answer: B

DeepSeek-VL2: B

Oval - Enumeration

Question: How many oval are in the image?

Options

A.There is 1 ovalin the image.

B. There is no oval in the image.
C. There are 2 ovals in the image.
D. There are 3 ovals in the image.

Answer: A

Qwen2.5-VL-72B: C

Oval - Existence

Question: Is there any oval in the image?

Options
A. Yes, there is at least one oval in the image.
B. No, there is no oval in the image.

Answer: A

InternVL2.5-78B: B

Oval - Location

Question: Where is the black oval located in the image?

Options

A.The black ovalis located in the left-half.

B. The black oval is located in the right-half.

C. The black ovalis located in the top-half.

D. The black oval is located in the bottom-half.

Answer: D

Qwen2.5-VL-72B: C

Oval - Reference

Question: What is the green oval referring to in the image?

Options

A.The green oval refers to a coffee table.
B. The green oval refers to a bookshelf.
C. The green oval refers to a dining table.
D. The green oval refers to a sideboard.

Answer: C

Deepgeek—VLZ: D

Figure 10: Qualitative results of oval shape in Stage 1 evaluation.



Scribble — Enumeration

Question: How many scribble are in the image?

Options

A.There are 2 scribbles in the image.
B. There is 1 scribble in the image.

C. There are 3 scribbles in the image.
D. There is no scribble in the image.

Answer: B

Qwen2.5-VL-72B: B

Scribble - Existence

Question: Is there any scribble in the image?

Options
A. No, there is no scribble in the image.
B. Yes, there is at least one scribble in the image.

Answer: B

InternVL2.5-78B: B

Scribble - Location

Question: Where is the red scribble located in the
image?

Options

A.The red scribble is located in the left-half.

B. The red scribble is located in the right-half.

C. The red scribble is located in the bottom-half.
D. The red scribble is located in the top-half.

Answer: A

Qwen2.5-VL-72B: A

Scribble — Reference

Question: Where is the red scribble located in the image?

Options

A.The red scribble is located in the bottom-half.
B. The red scribble is located in the right-half.

C. The red scribble is located in the left-half.

D. The red scribble is located in the top-half.

Answer: C

DeepSeek-VL2: A

Scribble - Enumeration

Question: How many scribble are in the image?

Options

A.There are 3 scribbles in the image.
B. There is no scribble in the image.
C. There are 2 scribbles in the image.
D. There is 1 scribble in the image.

Answer: D

Qwen2.5-VL-72B: C

Scribble - Existence

Question: Is there any scribble in the image?

Options
A. Yes, there is at least one scribble in the image.
B. No, there is no scribble in the image.

Answer: A

InternVL2.5-78B: B

Scribble - Location

Question: Where is the red scribble located in the
image?

Options

A.The red scribble is located in the bottom-half.
B. The red scribble is located in the right-half.

C. The red scribble is located in the left-half.

D. The red scribble is located in the top-half.

Answer: C

Qwen2.5-VL-72B: A

Scribble — Reference

Question: What is the green scribble referring to in the ~
image?

Options

A.The green scribble refers to a television remote.

B. The green scribble refers to a video game controller.
C. The green scribble refers to an electrical cord.

D. The green scribble refers to a person.

Answer: D

DeepSeek-VL2: B

Figure 11: Qualitative results of scribble shape in Stage 1 evaluation.




Point — Enumeration

Question: How many point are in the image?

Options

A.There is no point in the image.
B. There are 3 points in the image.
C. There are 2 points in the image.
D. There is 1 point in the image.

Answer: D

Qwen2.5-VL-72B: D

Point - Existence

Question: Is there any point in the image?

Options
A. No, there is no point in the image.
B. Yes, there is at least one point in the image.

Answer: B

InternVL2.5-78B: B

Point - Location

Question: Where is the black point located in the
image?

Options

A.The black point is located in the top-half.

B. The black point is located in the bottom-half.
C. The black point is located in the right-half.

D. The black point is located in the left-half.

Answer: C

Qwen2.5-VL-72B: C

Point - Reference

Question: What is the green point referring to in the image?

Options

A.The green point refers to a towel.

B. The green point refers to a toilet.

C. The green point refers to a sink.

D. The green point refers to a bathtub.

Answer: B

DeepSeek-VL2: B

Point — Enumeration

Question: How many point are in the image?

Options

A.There are 2 points in the image.
B. There are 3 points in the image.
C. There is 1 pointin the image.
D. There is no point in the image.

Answer: C

Qwen2.5-VL-72B: D

Point - Existence

Question: Is there any point in the image?

Options
A. Yes, there is at least one point in the image.
B. No, there is no point in the image.

Answer: A

InternVL2.5-78B: B

Point - Location

Question: Where is the black point located in the
image?

Options

A.The black point is located in the bottom-half.
B. The black point is located in the top-half.

C. The black point is located in the left-half.

D. The black point is located in the right-half.

Answer: D

Qwen2.5-VL-72B: C

Point - Reference

Question: What is the red point referring to in the image?

Options

A.The red point refers to a cone.
B. The red point refers to a ball.

C. The red point refers to a flag.

D. The red point refers to a person.

Answer: D

Deepgeek—VLZ: B

Figure 12: Qualitative results of point shape in Stage 1 evaluation.



Emotion Recognition

Question: What emotion is the person showing in
the area highlighted by red bounding box?

Options

A.The detected facial expression is disgusted.
B. The detected facial expression is happiness.
C. The detected facial expression is fearful.

D. The detected facial expression is sleepy.

Answer: B

Qwen2.5-VL-72B: B

Question: What does the red bounding box
highlight in this street scene?

Options

A.This is a pedestrian crossing sign for safety.

B. This is the backside of a sign with no primary
information.

C. This is a directional arrow on the road surface.
D. This is a traffic light indicating a stop signal.

Answer: B

InternVL2.5-78B: B

Emotion Recognition

Question: What emotion is the person showing in
the area highlighted by red bounding box?

Options

A. The detected facial expression is flirty.

B. The detected facial expression is surprised.
C. The detected facial expression is sleepy.

D. The detected facial expression is neutral.

Answer: D

Qwen2.5-VL-72B: B

Scribble - Existence
Question: What does the red bounding box highlight in this e
street scene?

Options

A.This is a traffic island directing vehicle flow.

B. This is a designated parking zone for vehicles.

C. This is a pedestrian crossing area with a raised platform.
D. This is a landscaped median strip for aesthetic purposes.

Answer: A

InternVL2.5-78B: C

Figure 13: Qualitative results of facial emotion recognition task and street view recognition task.

Medical Image Analysis

Question: Please assess the pathological characteristics of this
region.

Options

A.The highlighted area represents benign hyperplasia of the
bladder urothelium, characterized by increased cell proliferation
without malignant transformation.

B. The highlighted area suggests bladder urothelial carcinoma, a
malignancy arising from the urinary bladder's epithelium.

C. The highlighted area indicates bladder squamous cell
carcinoma, a cancer developing from squamous cells lining the
bladder.

D. The highlighted area suggests bladder adenocarcinoma, a
malignancy originating from glandular cells within the bladder.

Answer: B

Qwen2.5-VL-72B: B

3D Object Recognition

Question: Given a top-down and a front view (from south to
north) of a room, identify the object marked by the red digit
tag and specify its position.

Options

A.This is a fridge,located at the north-east of the room.

B. This is a cabinet, located at the north-east of the room.

C. This is a fridge, located at the south-west of the room.

D. This is a microwave, located at the north-east of the room.

Answer: A

DeepSeek-VL2: A

Medical Image Analysis

Question: Please assess the pathological characteristics of
this region.

Options

A. The highlighted section demonstrates characteristics of
liver metastasis from colorectal adenocarcinoma, indicating
spread from the colon or rectum.

B. This area exhibits signs of cholangiocarcinoma, a cancer
arising from the bile ducts within the liver.

C. The annotated region displays characteristics of lung
squamous cell carcinoma, which arises from the squamous
cells lining the airways.

D. The annotated region shows features of hepatocellular
carcinoma, a type of liver cancer originating from the liver's
main functional cells.

Answer: C

Qwen2.5-VL-72B: A

3D Object Recognition

Question: Given a top-down and a front view (from south to
north) of a room, identify the object marked by the red
bounding box and specify its position.

Options

A.This is a dining table, located at the center of the room.
B. This is a dining table,located at the north-east of the
room.

C. This is a side table, located at the north-east of the
room.

D. This is a coffee table, located at the north-east of the
room.

Answer: B

Deepgeek-VLZ: D

Figure 14: Qualitative results of medical image analysis task and 3D object recognition task.



GUI Element Recognition

Question: Can you recognize the graphical user interface
(GUI) element highlighted by the red digit tag?

Options

A. The Ul control highlight by red digit tag corresponds to
the "display a tide chart for coastal areas" functionality.
B. The Ul control highlight by red digit tag corresponds to
the "open mind2web folderB" functionality.

C. The Ul control highlight by red digit tag corresponds to
the "show a summary of extreme weather alerts"
functionality.

D. The Ul control highlight by red digit tag corresponds to
the "show a summary of daylight hours" functionality.

Answer: B

Qwen2.5-VL-72B: B

Visual Relation Prediction

Question: What is the object that is in front of the thing
highlighted by the red digit tag?

Options

A.The object is the traffic light.
B. The object is the fence.

C. The object is the house.

D. The object is the toilet.

Answer: B

DeepSeek-VL2: B

Y

GUI Element Recognition

Question: Can you recognize the graphical user
interface (GUI) element highlighted by the red digit
tag?

Options

A. The Ul control highlight by red digit tag corresponds
to the "view a list of nearby weather stations"
functionality.

B. The Ul control highlight by red digit tag corresponds
to the "check weather on tuesday" functionality.

C. The Ul control highlight by red digit tag corresponds
to the "display hourly weather forecast" functionality.
D. The Ul control highlight by red digit tag corresponds
to the "show a summary of marine weather conditions"
functionality.

Answer: B

Qwen2.5-VL-72B: C

Visual Relation Prediction

Question: What is the object that is on the thing
highlighted by the red bounding box?

Options

A.The object is the food.

B. The object is the remote.
C. The object is the cat.

D. The object is the toaster.

Answer: B

Deepgeek-\/LZ: A

Figure 15: Qualitative results of GUI element recognition task and visual relation prediction object recognition task.



